Giải bài tập Vận dụng 2 trang 8 Toán 9 Tập 2 | Toán 9 - Chân trời sáng tạo

Hướng dẫn giải chi tiết từng bước bài tập Vận dụng 2 trang 8 Toán 9 Tập 2. Bài 1. Hàm số và đồ thị của hàm số y = ax² (a ≠ 0). Toán 9 - Chân trời sáng tạo

Đề bài:

Một vật rơi tự do từ độ cao 125 m so với mặt đất. Quãng đường chuyển động s (m) của vật phụ thuộc vào thời gian t (giây) được cho bởi công thức s = 5t2.

a) Sau 2 giây, vật này cách mặt đất bao nhiêu mét? Tương tự, sau 3 giây vật này cách mặt đất bao nhiêu mét?

b) Sau bao lâu thì vật này tiếp đất?

Đáp án và cách giải chi tiết:

a) Sau 2 giây, vật này cách mặt đất số mét là s = 5 . 22 = 20 (m).

Sau 3 giây, vật này cách mặt đất số mét là s = 5 . 32 = 45 (m).

b) Để vật này tiếp đất thì s = 125 thay vào 125 = 5t2.

Do đó t = 5 giây.

Vậy sau 5 giây thì vật tiếp đất.

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Khởi động trang 6 Toán 9 Tập 2

Một vật được thả rơi tự do từ độ cao 45 m. Quãng đường chuyển động s (m) của vật theo thời gian rơi t (giây) được cho bởi công thức s = 5t2. Sau khi thả 2 giây, quãng đường vật di chuyển được là bao nhiêu mét?

Khám phá 1 trang 6 Toán 9 Tập 2

Diện tích S của hình tròn được tính bởi công thức S = πR2, trong đó R là bán kính của hình tròn và π ≈ 3,14.

a) Diện tích S của hình tròn với R = 10 cm.

b) Diện tích S có phải là hàm số của biến số R không?

Thực hành 1 trang 7 Toán 9 Tập 2

a) Xác định hệ số của x2 trong các hàm số sau: y = 0,75x2; y = −3x2; .

b) Với mỗi hàm số đã cho ở câu a), tính giá trị của y khi x = −2; x = 2.

Vận dụng 1 trang 7 Toán 9 Tập 2

Gọi x (cm) là chiều dài cạnh của một viên gạch lát nền hình vuông.

a) Viết công thức tính diện tích S (cm2) của viên gạch đó.

b) Tính S khi x = 20; x = 30; x = 60.

Khám phá 2 trang 7 Toán 9 Tập 2

Cho hàm số .

Hoàn thành bảng giá trị sau:

Thực hành 2 trang 8 Toán 9 Tập 2

Lập bảng giá trị của hai hàm số  và với x lần lượt bằng -4; -2; 0; 2; 4.

Khám phá 3 trang 8 Toán 9 Tập 2

Cho hàm số y = x2. Ta lập bảng giá trị sau:

Từ bảng trên, ta lấy các điểm A(−3; 9), B(−2; 4), C(−1; 1), O(0; 0), C'(1; 1), B'(2; 4), A'(3; 9) trên mặt phẳng tọa độ Oxy. Đồ thị hàm số y = x2 là một đường cong đi qua các điểm nêu trên và có dạng như Hình 2.

Từ đồ thị ở Hình 2, hãy trả lời các câu hỏi sau:

a) Đồ thị của hàm số có vị trí như thế nào so với trục hoành?

b) Có nhận xét gì về vị trí của các cặp điểm A và A', B và B', C và C' so với trục tung?

c) Điểm nào là điểm thấp nhất của đồ thị?

Khám phá 4 trang 8 Toán 9 Tập 2

Cho hàm số .

a) Lập bảng giá trị của hàm số khi x lần lượt nhận các giá trị −2; −1; 0; 1; 2.

b) Vẽ đồ thị của  hàm số. Có nhận xét gì về đồ thị của hàm số đó?

Vận dụng 3 trang 10 Toán 9 Tập 2

Động năng (tính bằng J) của một quả bưởi nặng 1 kg rơi với vận tốc v (m/s) được tính bằng công thức .

a) Tính động năng của quả bưởi đạt được khi nó rơi với tốc độ lần lượt là 3 m/s, 4 m/s.

b) Tính tốc độ rơi của quả bưởi tại thời điểm quả bưởi đạt được động năng 32 J.

Bài 1 trang 10 Toán 9 Tập 2

Cho hàm số y = −x2.

a) Lập bảng giá trị của hàm số.

b) Vẽ đồ thị của hàm số.

Bài 2 trang 10 Toán 9 Tập 2

Cho hàm số  .

a) Vẽ đồ thị của hàm số.

b) Trong các điểm A(-6; 8), B(6; 8), , điểm nào thuộc đồ thị của hàm số trên?

Bài 3 trang 10 Toán 9 Tập 2

Cho hai hàm số  và . Vẽ đồ thị của hai hàm số đã cho trên cùng một mặt phẳng tọa độ Oxy.

Bài 4 trang 10 Toán 9 Tập 2

Cho hàm số y = ax2 (a ≠ 0).

a) Tìm a, biết đồ thị của hàm số đi qua điểm M(2; 6).

b) Vẽ đồ thị của hàm số với a vừa tìm được.

c) Tìm các điểm thuộc đồ thị của hàm số có tung độ y = 9.

Bài 5 trang 10 Toán 9 Tập 2

Cho một hình lập phương có độ dài cạnh x (cm).

a) Viết công thức tính diện tích toàn phần S (cm2) của hình lập phương theo x.

b) Lập bảng giá trị của hàm số S khi x lần lượt nhận các giá trị: , 1, , 2, 3.

c) Tính độ dài cạnh của hình lập phương, biết S = 54 cm2.

Bài 6 trang 10 Toán 9 Tập 2

Khi gió thổi vuông góc vào cánh buồm của một con thuyền thì lực F (N) của nó tỉ lệ thuận với bình phương tốc độ v (m/s) của gió, tức là F = av2 (a là hằng số). Biết rằng khi tốc độ của gió bằng 3 m/s thì lực tác động lên cánh buồm bằng 180 N.

a) Tính hằng số a.

b) Với a vừa tìm được, tính lực F khi v = 15 m/s và khi v = 26 m/s.

c) Biết rằng cánh buồm chỉ có thể chịu được một lực

Giải bài tập Toán 9 - Chân trời sáng tạo

Chương 1: Phương trình và hệ phương trình

Bài 1. Phương trình quy về phương trình bậc nhất một ẩn

Bài 2. Phương trình bậc nhất hai ẩn và hệ hai phương trình bậc nhất hai ẩn.

Bài 3. Giải hệ hai phương trình bậc nhất hai ẩn.

Bài tập cuối chương 1.

Chương 2: Bất đẳng thức. Bất phương trình bậc nhất một ẩn

Bài 1. Bất đẳng thức.

Bài 2. Bất phương trình bậc nhất một ẩn.

Bài tập cuối chương 2.

Chương 3: Căn thức

Bài 1. Căn bậc hai.

Bài 2. Căn bậc ba.

Bài 3. Tính chất của phép khai phương.

Bài 4. Biến đổi đơn giản biểu thức chứa căn thức bậc hai.

Bài tập cuối chương 3.

Chương 4: Hệ thức lượng trong tam giác vuông

Bài 1. Tỉ số lượng giác của góc nhọn

Bài 2. Hệ thức giữa cạnh và góc của tam giác vuông

Bài tập cuối chương 4

Chương 5. Đường tròn

Bài 1. Đường tròn

Bài 2. Tiếp tuyến của đường tròn

Bài 3. Góc ở tâm. Góc nội tiếp

Bài 4. Hình quạt tròn và hình vành khuyên

Bài tập cuối chương 5

Chương 6. Hàm số y = ax² (a khác 0) và phương trình bậc hai một ẩn

Bài 1. Hàm số và đồ thị của hàm số y = ax² (a ≠ 0)

Bài 2. Phương trình bậc hai một ẩn

Bài 3. Định lí Viète

Bài tập cuối chương 6

Chương 7. Một số yếu tố thống kê

Bài 1. Bảng tần số và biểu đồ tần số

Bài 2. Bảng tần số tương đối và biểu đồ tần số tương đối

Bài 3. Biểu diễn số liệu ghép nhóm

Bài tập cuối chương 7

Chương 8. Một số yếu tố xác suất

Bài 1. Không gian mẫu và biến cố

Bài 2. Xác suất của biến cố

Bài tập cuối chương 8

Chương 9. Tứ giác nội tiếp. Đa giác đều

Bài 1. Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác

Bài 2. Tứ giác nội tiếp

Bài 3. Đa giác đều và phép quay

Bài tập cuối chương 9

Chương 10. Các hình khối trong thực tiễn

Bài 1. Hình trụ

Bài 2. Hình nón

Bài 3. Hình cầu

Bài tập cuối chương 10

Hoạt động thực hành và trải nghiệm

Hoạt động 3. Vẽ đồ thị hàm số bậc hai y = ax2 (a ≠ 0) bằng phần mềm GeoGebra

Hoạt động 4. Chuyển dữ liệu từ bảng vào biểu đồ trên phần mềm Microsoft Word

Hoạt động 5. Cắt đa giác đều làm vòng quay may mắn

Hoạt động thực hành trải nghiệm

Hoạt động 1. Làm giác kế đo góc nâng đơn giản

Hoạt động 2. Vẽ đường tròn bằng phần mềm GeoGebra