Giải bài tập Bài 1 trang 88 Toán 9 Tập 1 | Toán 9 - Chân trời sáng tạo
Hướng dẫn giải chi tiết từng bước bài tập Bài 1 trang 88 Toán 9 Tập 1. Bài 2. Tiếp tuyến của đường tròn. Toán 9 - Chân trời sáng tạo
Đề bài:
Trong Hình 14, MB, MC lần lượt là tiếp tuyến của đường tròn (O) tại B, C; . Tính số đo .
Đáp án và cách giải chi tiết:
Vì MB, MC lần lượt là hai tiếp tuyến của đường tròn (O) tại B, C nên MB ⊥ OB, MC ⊥ OC hay .
Xét tứ giác OBMC có: (tổng các góc của một tứ giác).
Suy ra .
Do đó .
Nguồn: loigiaitoan.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Bài tập liên quan:
Khởi động trang 83 Toán 9 Tập 1
Hãy mô tả các vị trí của Mặt Trời so với đường chân trời ở các thời điểm Mặt Trời lặn khác nhau trong hình dưới đây.
Khám phá 1 trang 83 Toán 9 Tập 1
Nêu nhận xét về số điểm chung của đường thẳng a và đường tròn (O) trong mỗi hình sau:
Thực hành 1 trang 85 Toán 9 Tập 1
Cho đường tròn (J; 5 cm) và đường thẳng c. Gọi K là chân đường vuông góc vẽ từ J xuống c, d là độ dài của đoạn thẳng JK. Xác định vị trí tương đối của đường thẳng c và đường tròn (J; 5 cm) trong mỗi trường hợp sau:
a) d = 4 cm;
b) d = 5 cm;
c) d = 6 cm.
Vận dụng 1 trang 85 Toán 9 Tập 1
Một diễn viên xiếc đi xe đạp một bánh trên sợi dây cáp căng được cố định ở hai đầu dây. Biết đường kính bánh xe là 72 cm, tính khoảng cách từ trục bánh xe đến dây cáp.
Khám phá 2 trang 85 Toán 9 Tập 1
Cho điểm A nằm trên đường tròn (O; R), đường thẳng d đi qua A và vuông góc với OA. Gọi M là một điểm trên d (M khác A).
a) Giải thích tại sao ta có OA = R và OM > R.
b) Giải thích tại sao d và (O) không thể có điểm chung nào khác ngoài A.
Thực hành 2 trang 86 Toán 9 Tập 1
Cho tam giác ABC có đường cao AH (Hình 8). Tìm tiếp tuyến của đường tròn (A; AH) tại H.
Vận dụng 2 trang 86 Toán 9 Tập 1
Một diễn viên xiếc đi xe đạp trên một sợi dây cáp căng (Hình 9). Ta coi sợi dây là tiếp tuyến của mỗi bánh xe, xác định các tiếp điểm.
Khám phá 3 trang 87 Toán 9 Tập 1
Cho đường tròn (O) và hai tiếp tuyến của đường tròn (O) tại B và C cắt nhau tại điểm A (Hình 10).
a) Chứng minh hai tam giác ABO và ACO bằng nhau.
b) Tìm các đoạn thẳng bằng nhau và các góc bằng nhau trong Hình 10.
Thực hành 3 trang 87 Toán 9 Tập 1
Cho điểm M nằm ngoài đường tròn (I; 6 cm) và ME, MF là hai tiếp tuyến của đường tròn này tại E và F. Cho biết .
a) Tính số đo và .
b) Tính độ dài MI.
Vận dụng 3 trang 88 Toán 9 Tập 1
Bánh đà của một động cơ được thiết kế có dạng là một đường tròn tâm O, bán kính 15 cm được kéo bởi một dây curoa. Trục của mô tơ truyền lực được biểu diễn bởi điểm M (Hình 13). Cho biết khoảng cách OM là 35 cm.
a) Tính độ dài của hai đoạn dây curoa MA và MB (kết quả làm tròn đến hàng phần mười).
b) Tính số đo tạo bởi hai tiếp tuyến AM, BM và số đo (kết quả làm tròn đến phút).
Bài 2 trang 88 Toán 9 Tập 1
Quan sát Hình 15. Biết AB, AC lần lượt là tiếp tuyến của đường tròn (O) tại B, C. Tính giá trị của x.
Bài 3 trang 89 Toán 9 Tập 1
Trong Hình 16, AB = 9, BC = 12, AC = 15 và BC là đường kính của đường tròn (O). Chứng minh AB là tiếp tuyến của đường tròn (O).
Bài 4 trang 89 Toán 9 Tập 1
Cho tam giác ABC có đường tròn (O) nằm trong và tiếp xúc với ba cạnh của tam giác. Biết AM = 6 cm, BP = 3 cm, CE = 8 cm (Hình 17). Tính chu vi tam giác ABC.
Bài 5 trang 89 Toán 9 Tập 1
Cho đường tròn (O; R) có đường kính AB. Vẽ dây AC sao cho AC = R. Gọi I là trung điểm của dây AC. Đường thẳng OI cắt tiếp tuyến Ax tại M. Chứng minh rằng:
a) có số đo bằng 90°, từ đó suy ra độ dài của BC theo R;
b) OM là tia phân giác của ;
c) MC là tiếp tuyến của đường tròn (O; R).
Bài 6 trang 89 Toán 9 Tập 1
Cho đường tròn (O; 5 cm) điểm M nằm ngoài (O) sao cho hai tiếp tuyến MA và MB (A, B là hai tiếp điểm) vuông góc với nhau tại M.
a) Tính độ dài của MA và MB.
b) Qua giao điểm I của đoạn thẳng MO và đường tròn (O), vẽ một tiếp tuyến cắt OA, OB lần lượt tại C, D. Tính độ dài của CD.
Bài 7 trang 89 Toán 9 Tập 1
Cho đường tròn (O), điểm M nằm ngoài (O) sao cho MA và MB là hai tiếp tuyến (A, B là hai tiếp điểm) thỏa mãn . Biết chu vi tam giác MAB là 18 cm, tính độ dài dây AB.
Bài 8 trang 89 Toán 9 Tập 1
Trong Hình 18, AB là tiếp tuyến của đường tròn (O) tại B.
a) Tính bán kính r của đường tròn (O).
b) Tính chiều dài cạnh OA của tam giác ABO.