Giải bài tập Bài 9.32 trang 109 Toán 8 Tập 2 | Toán 8 - Kết nối tri thức
Hướng dẫn giải chi tiết từng bước bài tập Bài 9.32 trang 109 Toán 8 Tập 2. Luyện tập chung chương 9 trang 108.. Toán 8 - Kết nối tri thức
Đề bài:
Cho tam giác ABC vuông tại A và có đường cao AH. Biết rằng BH = 16 cm, CH = 9 cm.
a) Tính độ dài đoạn thẳng AH.
b) Tính độ dài các đoạn thẳng AB và AC.
Đáp án và cách giải chi tiết:
a) Có BC = BH + CH = 16 + 9 = 25 (cm).
Xét tam giác ABC vuông tại A có: AB2 + AC2 = BC2 (định lý Pythagore).
Xét tam giác AHC vuông tại H có: AC2 = AH2 + CH2 (định lý Pythagore).
Suy ra AH2 = AC2 – CH2 (1).
Xét tam giác AHB vuông tại H có: AH2 + BH2 = AB2 (định lý Pythagore).
Suy ra AH2 = AB2 – BH2 (2).
Xét (1) + (2), có:
2AH2 = AC2 – CH2 + AB2 – BH2
2AH2 = BC2 – CH2 – BH2 (vì AB2 + AC2 = BC2)
2AH2 = 252 – 92 – 162
2AH2 = 288
AH2 = 144
Suy ra AH = 12 (cm).
b) Có AC2 = AH2 + CH2 = 122 + 92 = 225.
Suy ra AC = 15 (cm).
Có AB2 = AH2 + BH2 = 122 + 162 = 400.
Suy ra AB = 20 (cm).
Nguồn: loigiaitoan.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Bài tập liên quan:
Bài 9.33 trang 109 Toán 8 Tập 2
Cho tam giác ABC có AB = 6 cm, AC = 8 cm, BC = 10 cm. Cho điểm M nằm trên cạnh BC sao cho BM = 4 cm. Vẽ đường thẳng MN vuông góc với AC tại N và đường thẳng MP vuông góc với AB tại P.
a) Chứng minh rằng ΔBMP ∽ ΔMCN.
b) Tính độ dài đoạn thẳng AM.
Bài 9.34 trang 109 Toán 8 Tập 2
Trong Hình 9.72, cho AH, HE, HF lần lượt là các đường cao của các tam giác ABC, AHB, AHC. Chứng minh rằng:
a) ΔAEH ∽ ΔAHB;
b) ΔAFH ∽ ΔAHC;
c) ΔAFE ∽ ΔABC.
Bài 9.35 trang 109 Toán 8 Tập 2
Cho tam giác ABC vuông tại A có đường cao AH. Cho M và N lần lượt là trung điểm của AB và AC. Chứng minh ΔHBM∽ ΔHAN.
Bài 9.36 trang 109 Toán 8 Tập 2
Vào gần buổi trưa, khi bóng bạn An dài 60 cm thì bóng cột cờ dài 3 m.
a) Biết rằng bạn An cao 1,4 m. Hỏi cột cờ cao bao nhiêu mét?
b) Vào buổi chiều khi bóng bạn An dài 3 m, hỏi bóng cột cờ dài bao nhiêu mét?