Giải bài tập Toán 9 Bài tập cuối chương 6 | Kết Nối Tri Thức

Hướng dẫn giải chi tiết Bài tập cuối chương 6

Bài 6.39 trang 30 Toán 9 Tập 2

Điểm nào sau đây thuộc đồ thị của hàm số

A. (1; 2).

B. (2; 1).

C. (–1; 2).

D.

Xem cách giải chi tiết

Bài 6.40 trang 30 Toán 9 Tập 2

Hình 6.11 là hai đường parabol trong mặt phẳng toạ độ Oxy. Khẳng định nào sau đây là đúng?

A. a < 0 < b.

B. a < b < 0.

C. a > b > 0.

D. a > 0 > b.

Xem cách giải chi tiết

Bài 6.41 trang 30 Toán 9 Tập 2

Các nghiệm của phương trình x2 + 7x + 12 = 0 là

A. x1 = 3; x2 = 4.

B. x1 = –3; x2 = –4.

C. x1 = 3; x2 = –4.

D. x1 = –3; x2 = 4.

Xem cách giải chi tiết

Bài 6.42 trang 30 Toán 9 Tập 2

Phương trình bậc hai có hai nghiệm x­1 = 13 và x2 = 25 là

A. x2 – 13x + 25 = 0.

B. x2 – 25x + 13 = 0.

C. x2 – 38x + 325 = 0.

D. x2 + 38x + 325 = 0.

Xem cách giải chi tiết

Bài 6.43 trang 30 Toán 9 Tập 2

Gọi x1, x2 là hai nghiệm của phương trình x2 – 5x + 6 = 0. Khi đó, giá trị của biểu thức  là

A. 13.

B. 19.

C. 25.

D. 5.

Xem cách giải chi tiết

Bài 6.44 trang 30 Toán 9 Tập 2

Chiều dài và chiều rộng của hình chữ nhật có chu vi 20 cm và diện tích 24 cm2

A. 5 cm và 4 cm.

B. 6 cm và 4 cm.

C. 8 cm và 3 cm.

D. 10 cm và 2 cm.

Xem cách giải chi tiết

Bài 6.45 trang 30 Toán 9 Tập 2

Vẽ đồ thị của các hàm số trên cùng một mặt phẳng toạ độ.

Xem cách giải chi tiết

Bài 6.46 trang 30 Toán 9 Tập 2

Cho hàm số y = ax2. Xác định hệ số a, biết đồ thị hàm số đi qua điểm A(3; 3). Vẽ đồ thị của hàm số trong trường hợp đó.

Xem cách giải chi tiết

Bài 6.47 trang 30 Toán 9 Tập 2

Giải các phương trình sau:

a)

b)

Xem cách giải chi tiết

Bài 6.48 trang 31 Toán 9 Tập 2

Cho phương trình x2 – 11x + 30 = 0. Gọi x1, x2 là hai nghiệm của phương trình. Không giải phương trình, hãy tính: 

a)

b)

Xem cách giải chi tiết

Bài 6.49 trang 31 Toán 9 Tập 2

Tìm hai số u và v, biết:

a) u + v = 13 và uv = 40;

b) u – v = 4 và uv = 77.

Xem cách giải chi tiết

Bài 6.50 trang 31 Toán 9 Tập 2

Các kĩ sư đảm bảo an toàn của đường cao tốc thường sử dụng công thức d = 0,05v2 + 1,1v để ước tính khoảng cách an toàn tối thiểu d (feet) (tức là độ dài quãng đường mà xe đi được kể từ khi đạp phanh đến khi xe dừng lại) đối với một phương tiện di chuyển với tốc độ v (dặm/giờ) (theo Algebra 2, NXB McGraw-Hill, 2008). Giả sử giới hạn tốc độ trên một đường cao tốc nào đó là 70 dặm/giờ. Nếu một ô tô có thể dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó có chạy nhanh hơn giới hạn tốc độ của đường cao tốc này không?

Xem cách giải chi tiết

Bài 6.51 trang 31 Toán 9 Tập 2

Bác Hương gửi tiết kiệm ngân hàng 100 triệu đồng với kì hạn 12 tháng. Sau một năm, do chưa có nhu cầu sử dụng nên bác chưa rút sổ tiết kiệm này ra mà gửi tiếp và gửi thêm một sổ tiết kiệm mới với số tiền 50 triệu đồng, cũng với kì hạn 12 tháng. Sau hai năm (kể từ khi gửi lần đầu), bác Hương nhận được số tiền cả vốn lẫn lãi là 176 triệu đồng. Tính lãi suất năm của hình thức gửi tiết kiệm này (giả sử lãi suất không đổi trong suốt quá trình gửi).

Xem cách giải chi tiết

Bài 6.52 trang 31 Toán 9 Tập 2

Hai khối học sinh lớp 8 và lớp 9 của một trường trung học cơ sở tham gia lao động. Nếu làm chung thì sẽ hoàn thành công việc sau 1 giờ 12 phút. Nếu mỗi khối lớp làm riêng thì khối lớp 9 làm xong nhanh hơn khối lớp 8 là 1 giờ. Hỏi nếu mỗi khối lớp làm riêng thì sau bao lâu sẽ hoàn thành công việc?

Xem cách giải chi tiết

Giải bài tập Toán 9 - Kết nối tri thức

Chương 1. Phương trình và hệ hai phương trình bậc nhất hai ẩn

Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn.

Bài 2. Giải hệ hai phương trình bậc nhất hai ẩn.

Luyện tập chung Chương 1

Bài 3. Giải bài toán bằng cách lập hệ phương trình.

Bài tập cuối chương 1

Chương 2. Phương trình và bất phương trình bậc nhất một ẩn

Bài 4. Phương trình quy về phương trình bậc nhất một ẩn.

Bài 5. Bất đẳng thức và tính chất.

Luyện tập chung Chương 2

Bài 6. Bất phương trình bậc nhất một ẩn.

Bài tập cuối chương 2

Chương 3: Căn bậc hai và căn bậc ba

Bài 7. Căn bậc hai và căn thức bậc hai

Bài 8. Khai căn bậc hai với phép nhân và phép chia.

Luyện tập chung Chương 3 trang 52

Bài 9. Biến đổi đơn giản và rút gọn biểu thức chứa căn thức bậc hai

Bài 10. Căn bậc ba và căn thức bậc ba.

Luyện tập chung Chương 3 trang 63

Bài tập cuối chương 3

Chương 4: Hệ thức lượng trong tam giác vuông

Bài 11. Tỉ số lượng giác của góc nhọn.

Bài 12. Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng.

Luyện tập chung Chương 4

Bài tập cuối chương 4

Chương 5. Đường tròn

Bài 13. Mở đầu về đường tròn

Bài 14. Cung và dây của một đường tròn

Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên

Luyện tập chung chương 5 trang 97,98

Luyện tập chung chương 5 trang 108

Bài tập cuối chương 5

Hoạt động thực hành trải nghiệm

Pha chế dung dịch theo nồng độ yêu cầu

Tính chiều cao và xác định khoảng cách

Chương 6. Hàm số y = ax² (a khác 0). Phương trình bậc hai một ẩn

Bài 18. Hàm số y = ax² (a ≠ 0)

Bài 19. Phương trình bậc hai một ẩn

Luyện tập chung trang 18

Bài 20. Định lí Viète và ứng dụng

Bài 21. Giải bài toán bằng cách lập phương trình

Luyện tập chung trang 28

Bài tập cuối chương 6

Chương 7. Tần số và tần số tương đối

Bài 22. Bảng tần số và biểu đồ tần số

Bài 23. Bảng tần số tương đối và biểu đồ tần số tương đối

Luyện tập chung trang 43

Bài 24. Bảng tần số, tần số tương đối ghép nhóm và biểu đồ

Bài tập cuối chương 7

Chương 8. Xác suất của biến cố trong một số mô hình xác suất đơn giản

Bài 25. Phép thử ngẫu nhiên và không gian mẫu

Bài 26. Xác suất của biến cố liên quan tới phép thử

Luyện tập chung trang 64

Bài tập cuối chương 8

Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp

Bài 27. Góc nội tiếp

Bài 28. Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác

Luyện tập chung trang 78

Bài 29. Tứ giác nội tiếp

Bài 30. Đa giác đều

Luyện tập chung trang 90

Bài tập cuối chương 9

Chương 10. Một số hình khối trong thực tiễn

Bài 31. Hình trụ và hình nón

Bài 32. Hình cầu

Luyện tập chung trang 106

Bài tập cuối chương 10

Hoạt động thực hành trải nghiệm

Giải phương trình, hệ phương trình và vẽ đồ thị hàm số với phần mềm GeoGebra

Vẽ hình đơn giản với phần mềm GeoGebra

Xác định tần số, tần số tương đối, vẽ các biểu đồ biểu diễn bảng tần số, tần số tướng đối bằng Excel

Gene trội trong các thế hệ lai