Giải bài tập Thử thách nhỏ trang 14 Toán 9 Tập 2 | Toán 9 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Thử thách nhỏ trang 14 Toán 9 Tập 2. Bài 19. Phương trình bậc hai một ẩn. Toán 9 - Kết nối tri thức

Đề bài:

Anh Pi hỏi: “Có thể nói gì về nghiệm của phương trình bậc hai ax2 + bx + c = 0 nếu a và c trái dấu?”

Em hãy trả lời câu hỏi của anh Pi.

Đáp án và cách giải chi tiết:

Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0).

Ta có ∆ = b2 – 4ac.

Do a và c trái dấu nên ac < 0, nên – 4ac > 0, suy ra b2 – 4ac > 0 hay ∆ > 0.

Khi đó, phương trình bậc hai ax2 + bx + c = 0 luôn có hai nghiệm phân biệt.

Vậy phương trình bậc hai ax2 + bx + c = 0 luôn có hai nghiệm phân biệt nếu a và c trái dấu.

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Mở đầu trang 10 Toán 9 Tập 2

Trên một mảnh đất hình chữ nhật có kích thước 28 m × 16 m, người ta dự định làm một bể bơi có đường đi xung quanh (H.6.9). Hỏi bề rộng của đường đi là bao nhiêu để diện tích của bể bơi là 288 m2?

 

HĐ1 trang 10 Toán 9 Tập 2

Xét bài toán trong tình huống mở đầu.

Gọi x (m) là bề rộng của mặt đường (0 < x < 8). Tính chiều dài và chiều rộng của bể bơi theo x.

HĐ2 trang 10 Toán 9 Tập 2

Dựa vào kết quả HĐ1, tính diện tích của bể bơi theo x.

HĐ3 trang 10 Toán 9 Tập 2

Sử dụng giả thiết và kết quả HĐ2, hãy viết phương trình để tìm x.

Luyện tập 1 trang 11 Toán 9 Tập 2

Trong các phương trình sau, những phương trình nào là phương trình bậc hai ẩn x? Chỉ rõ các hệ số a, b, c của mỗi phương trình đó.

a) x2 + 5 = 0;

b) 2x2 + 7x = 0;

c)

d) 0,5x2 = 0.

Tranh luận trang 11 Toán 9 Tập 2

Anh Pi nói rằng: “Phương trình (ẩn x) mx2 + 2x + 1 = 0 (m là một số cho trước) là một phương trình bậc hai với a = m, b = 2, c = 1”.

Ý kiến của em thế nào?

Luyện tập 2 trang 12 Toán 9 Tập 2

Giải các phương trình sau:

a) 2x2 + 6x = 0;

b) 5x2 + 11x = 0.

Luyện tập 3 trang 12 Toán 9 Tập 2

Giải các phương trình sau:

a) x2 – 25 = 0;

b) (x + 3)2 = 5.

Luyện tập 4 trang 13 Toán 9 Tập 2

Cho phương trình x2 + 6x = 1.

Hãy cộng vào cả hai vế của phương trình với cùng một số thích hợp để được một phương trình mà vế trái có thể biến đổi thành một bình phương. Từ đó, hãy giải phương trình đã cho.

HĐ4 trang 13 Toán 9 Tập 2

Thực hiện lần lượt các bước sau để giải phương trình:

2x2 – 8x + 3 = 0.

a) Chuyển hạng tử tự do sang vế phải.

b) Chia cả hai vế của phương trình cho hệ số của x2.

c) Thêm vào hai vế của phương trình nhận được ở câu b với cùng một số để vế trái có thể biến đổi thành một bình phương. Từ đó tìm nghiệm x.

Luyện tập 5 trang 14 Toán 9 Tập 2

Áp dụng công thức nghiệm, giải các phương trình sau:

a) 2x2 – 5x + 1 = 0;

b) x2 + 8x + 16 = 0;

c) x2 – x + 1 = 0.

Luyện tập 6 trang 15 Toán 9 Tập 2

Xác định a, b’, c rồi dùng công thức nghiệm thu gọn giải các phương trình sau:

a) 3x2 + 8x – 3 = 0;

b)

Vận dụng trang 15 Toán 9 Tập 2

Giải bài toán trong tình huống mở đầu.

Luyện tập 7 trang 16 Toán 9 Tập 2

Sử dụng máy tính cầm tay, tìm nghiệm của các phương trình sau:

a)

b) 3x2 – 5x + 7 = 0;

c) 4x2 – 11x + 1 = 0.

Bài 6.8 trang 16 Toán 9 Tập 2

Đưa các phương trình sau về dạng ax2 + bx + x = 0 và xác định các hệ số a, b, c của phương trình đó.

a) 3x2 + 2x – 1 = x2 – x;

b) (2x + 1)2 = x2 + 1.

Bài 6.9 trang 16 Toán 9 Tập 2

Giải các phương trình sau:

a)

b) (3x + 2)2 = 5.

Bài 6.10 trang 16 Toán 9 Tập 2

Không cần giải phương trình, hãy xác định các hệ số a, b, c, tính biệt thức ∆ và xác định số nghiệm của mỗi phương trình sau:

a) 11x2 + 13x – 1 = 0;

b) 9x2 + 42x + 49 = 0;

c) x2 – 2x + 3 = 0.

Bài 6.11 trang 17 Toán 9 Tập 2

Dùng công thức nghiệm của phương trình bậc hai, giải các phương trình sau:

a)

b) 4x2 + 28x + 49 = 0;

c)

Bài 6.12 trang 17 Toán 9 Tập 2

Sử dụng máy tính cầm tay, tìm nghiệm của các phương trình sau:

a) 0,1x2 + 2,5x – 0,2 = 0;

b) 0,01x2 – 0,05x + 0,0625 = 0;

c) 1,2x2 + 0,75x + 2,5 = 0.

Bài 6.13 trang 17 Toán 9 Tập 2

Độ cao h (mét) so với mặt đất của một vật được phóng thẳng đứng lên trên từ mặt đất với vận tốc ban đầu v0 = 19,6 m/s cho bởi công thức h = 19,6t – 4,9t2, ở đó t là thời gian kể từ khi phóng (giây) (theo Vật lí đại cương, NXB Giáo dục Việt Nam, 2016). Hỏi sau bao lâu kể từ khi phóng, vật sẽ rơi trở lại mặt đất?

Giải bài tập Toán 9 - Kết nối tri thức

Chương 1. Phương trình và hệ hai phương trình bậc nhất hai ẩn

Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn.

Bài 2. Giải hệ hai phương trình bậc nhất hai ẩn.

Luyện tập chung Chương 1

Bài 3. Giải bài toán bằng cách lập hệ phương trình.

Bài tập cuối chương 1

Chương 2. Phương trình và bất phương trình bậc nhất một ẩn

Bài 4. Phương trình quy về phương trình bậc nhất một ẩn.

Bài 5. Bất đẳng thức và tính chất.

Luyện tập chung Chương 2

Bài 6. Bất phương trình bậc nhất một ẩn.

Bài tập cuối chương 2

Chương 3: Căn bậc hai và căn bậc ba

Bài 7. Căn bậc hai và căn thức bậc hai

Bài 8. Khai căn bậc hai với phép nhân và phép chia.

Luyện tập chung Chương 3 trang 52

Bài 9. Biến đổi đơn giản và rút gọn biểu thức chứa căn thức bậc hai

Bài 10. Căn bậc ba và căn thức bậc ba.

Luyện tập chung Chương 3 trang 63

Bài tập cuối chương 3

Chương 4: Hệ thức lượng trong tam giác vuông

Bài 11. Tỉ số lượng giác của góc nhọn.

Bài 12. Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng.

Luyện tập chung Chương 4

Bài tập cuối chương 4

Chương 5. Đường tròn

Bài 13. Mở đầu về đường tròn

Bài 14. Cung và dây của một đường tròn

Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên

Luyện tập chung chương 5 trang 97,98

Luyện tập chung chương 5 trang 108

Bài tập cuối chương 5

Hoạt động thực hành trải nghiệm

Pha chế dung dịch theo nồng độ yêu cầu

Tính chiều cao và xác định khoảng cách

Chương 6. Hàm số y = ax² (a khác 0). Phương trình bậc hai một ẩn

Bài 18. Hàm số y = ax² (a ≠ 0)

Bài 19. Phương trình bậc hai một ẩn

Luyện tập chung trang 18

Bài 20. Định lí Viète và ứng dụng

Bài 21. Giải bài toán bằng cách lập phương trình

Luyện tập chung trang 28

Bài tập cuối chương 6

Chương 7. Tần số và tần số tương đối

Bài 22. Bảng tần số và biểu đồ tần số

Bài 23. Bảng tần số tương đối và biểu đồ tần số tương đối

Luyện tập chung trang 43

Bài 24. Bảng tần số, tần số tương đối ghép nhóm và biểu đồ

Bài tập cuối chương 7

Chương 8. Xác suất của biến cố trong một số mô hình xác suất đơn giản

Bài 25. Phép thử ngẫu nhiên và không gian mẫu

Bài 26. Xác suất của biến cố liên quan tới phép thử

Luyện tập chung trang 64

Bài tập cuối chương 8

Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp

Bài 27. Góc nội tiếp

Bài 28. Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác

Luyện tập chung trang 78

Bài 29. Tứ giác nội tiếp

Bài 30. Đa giác đều

Luyện tập chung trang 90

Bài tập cuối chương 9

Chương 10. Một số hình khối trong thực tiễn

Bài 31. Hình trụ và hình nón

Bài 32. Hình cầu

Luyện tập chung trang 106

Bài tập cuối chương 10

Hoạt động thực hành trải nghiệm

Giải phương trình, hệ phương trình và vẽ đồ thị hàm số với phần mềm GeoGebra

Vẽ hình đơn giản với phần mềm GeoGebra

Xác định tần số, tần số tương đối, vẽ các biểu đồ biểu diễn bảng tần số, tần số tướng đối bằng Excel

Gene trội trong các thế hệ lai