Giải bài tập Luyện tập 1 trang 81 Toán 9 Tập 2 | Toán 9 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Luyện tập 1 trang 81 Toán 9 Tập 2. Bài 29. Tứ giác nội tiếp. Toán 9 - Kết nối tri thức

Đề bài:

Cho tam giác ABC có các đường cao BE, CF. Biết rằng B^=60°, C^=80°.

a) Chứng tỏ rằng tứ giác BCEF nội tiếp một đường tròn có tâm là trung điểm của cạnh BC.

b) Tính số đo của các góc BFE và CEF.

Đáp án và cách giải chi tiết:

a) Vì BE, CF là hai đường cao của tam giác ABC nên BE ⊥ AC và CF ⊥ AB.

Xét ∆BCE vuông tại E, đường tròn ngoại tiếp tam giác có tâm là trung điểm O của BC và bán kính bằng nửa BC hay ba điểm B, C, E cùng nằm trên đường tròn tâm O, đường kính BC.

Xét ∆BCF vuông tại F, đường tròn ngoại tiếp tam giác có tâm là trung điểm O của BC và bán kính bằng nửa BC hay ba điểm B, C, F cùng nằm trên đường tròn tâm O, đường kính BC.

Do đó bốn điểm B, C, E, F cùng nằm trên đường tròn tâm O, đường kính BC.

Vậy tứ giác BCEF nội tiếp một đường tròn có tâm là trung điểm của cạnh BC.

b) Vì tứ giác BCEF nội tiếp một đường tròn nên các góc đối diện có tổng số đo bằng 180°. Do đó:

  • BFE^+BCE^=180°, suy ra BFE^=180°-BCE^=180°-80°=100°;
  • CEF^+CBF^=180°, suy ra CEF^=180°-CBF^=180°-60°=120°.

Vậy BFE^=100°; CEF^=120°.

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Mở đầu trang 80 Toán 9 Tập 2

Với mỗi tam giác cho trước luôn có một đường tròn đi qua ba đỉnh của tam giác đó. Điều này có đúng với tứ giác hay không? Trong bài học này, các em sẽ tìm hiểu vấn đề đó.

HĐ1 trang 80 Toán 9 Tập 2

Cho tứ giác ABCD có (H.9.28). Hãy giải thích vì sao bốn đỉnh của tứ giác ABCD cùng nằm trên một đường tròn có tâm là trung điểm O của đoạn thẳng BD.

HĐ2 trang 80 Toán 9 Tập 2

Trên đường tròn (O), lấy các điểm A, B, C, D sao cho ABCD là tứ giác lồi (H.9.29). Các đường trung trực của các cạnh AB, BC, CD, DA có đồng quy hay không?

HĐ3 trang 81 Toán 9 Tập 2

Em hãy đo các góc đối nhau A và C của tứ giác ABCD trong HĐ2 và tính tổng  So sánh kết quả của em với các bạn.

Thử thách nhỏ 1 trang 82 Toán 9 Tập 2

Cho tứ giác ABCD, biết rằng các đường trung trực của ba đoạn thẳng AB, AC, AD đồng quy tại một điểm. Hãy giải thích vì sao ABCD là tứ giác nội tiếp.

HĐ4 trang 82 Toán 9 Tập 2

Vẽ hình chữ nhật ABCD và giao điểm M của hai đường chéo AC và BD (H.9.33).

a) Hãy giải thích vì sao điểm M cách đều bốn đỉnh của hình chữ nhật ABCD.

b) Chứng tỏ rằng hình chữ nhật ABCD nội tiếp một đường tròn có bán kính bằng nửa đường chéo hình chữ nhật.

HĐ5 trang 82 Toán 9 Tập 2

Cho hình vuông ABCD có cạnh bằng 3 cm (H.9.34). Hãy xác định tâm, vẽ đường tròn ngoại tiếp hình vuông ABCD và cho biết bán kính của đường tròn đó.

Câu hỏi trang 82 Toán 9 Tập 2

Với điểm A cho trước nằm trên đường tròn (O), có bao nhiêu hình vuông có một đỉnh là A nội tiếp đường tròn (O)?

Luyện tập 2 trang 83 Toán 9 Tập 2

Cho hình thoi ABCD có các cạnh bằng 3 cm. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng tỏ rằng tứ giác MNPQ là hình chữ nhật và tìm bán kính đường tròn ngoại tiếp của tứ giác đó.

Thử thách nhỏ 2 trang 83 Toán 9 Tập 2

Nếu các hình chữ nhật có chung một đường chéo (ví dụ như hai hình chữ nhật ABCD và AECF trong Hình 9.36) thì các đỉnh của chúng có cùng nằm trên một đường tròn không?


Bài 9.18 trang 83 Toán 9 Tập 2

Cho ABCD là tứ giác nội tiếp. Tính số đo của các góc còn lại của tứ giác trong mỗi trường hợp sau:

a)

b)

c)

d)

Bài 9.19 trang 83 Toán 9 Tập 2

Cho điểm I nằm ngoài đường tròn (O). Qua I kẻ hai đường thẳng lần lượt cắt (O) tại bốn điểm A, B và C, D sao cho A nằm giữa B và I, C nằm giữa D và I. Chứng minh rằng IBD^=ICA^, IAC^=IDB^ và IA . IB = IC . ID.

Bài 9.20 trang 83 Toán 9 Tập 2

Cho hình bình hành ABCD nội tiếp đường tròn (O). Chứng minh rằng ABCD là hình chữ nhật.

Bài 9.21 trang 83 Toán 9 Tập 2

Cho hình thang ABCD (AB song song với CD) nội tiếp đường tròn (O). Chứng minh rằng ABCD là hình thang cân.

Bài 9.22 trang 83 Toán 9 Tập 2

Tính diện tích của một hình chữ nhật, biết rằng hình chữ nhật đó có chiều dài gấp hai lần chiều rộng và bán kính đường tròn ngoại tiếp bằng 2,5 cm.

Bài 9.23 trang 83 Toán 9 Tập 2

Người ta muốn dựng một khung cổng hình chữ nhật rộng 4 m và cao 3 m, bên ngoài khung cổng được bao bởi một khung thép dạng nửa đường tròn như Hình 9.37. Tính chiều dài của đoạn thép làm khung nửa đường tròn đó.

Giải bài tập Toán 9 - Kết nối tri thức

Chương 1. Phương trình và hệ hai phương trình bậc nhất hai ẩn

Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn.

Bài 2. Giải hệ hai phương trình bậc nhất hai ẩn.

Luyện tập chung Chương 1

Bài 3. Giải bài toán bằng cách lập hệ phương trình.

Bài tập cuối chương 1

Chương 2. Phương trình và bất phương trình bậc nhất một ẩn

Bài 4. Phương trình quy về phương trình bậc nhất một ẩn.

Bài 5. Bất đẳng thức và tính chất.

Luyện tập chung Chương 2

Bài 6. Bất phương trình bậc nhất một ẩn.

Bài tập cuối chương 2

Chương 3: Căn bậc hai và căn bậc ba

Bài 7. Căn bậc hai và căn thức bậc hai

Bài 8. Khai căn bậc hai với phép nhân và phép chia.

Luyện tập chung Chương 3 trang 52

Bài 9. Biến đổi đơn giản và rút gọn biểu thức chứa căn thức bậc hai

Bài 10. Căn bậc ba và căn thức bậc ba.

Luyện tập chung Chương 3 trang 63

Bài tập cuối chương 3

Chương 4: Hệ thức lượng trong tam giác vuông

Bài 11. Tỉ số lượng giác của góc nhọn.

Bài 12. Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng.

Luyện tập chung Chương 4

Bài tập cuối chương 4

Chương 5. Đường tròn

Bài 13. Mở đầu về đường tròn

Bài 14. Cung và dây của một đường tròn

Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên

Luyện tập chung chương 5 trang 97,98

Luyện tập chung chương 5 trang 108

Bài tập cuối chương 5

Hoạt động thực hành trải nghiệm

Pha chế dung dịch theo nồng độ yêu cầu

Tính chiều cao và xác định khoảng cách

Chương 6. Hàm số y = ax² (a khác 0). Phương trình bậc hai một ẩn

Bài 18. Hàm số y = ax² (a ≠ 0)

Bài 19. Phương trình bậc hai một ẩn

Luyện tập chung trang 18

Bài 20. Định lí Viète và ứng dụng

Bài 21. Giải bài toán bằng cách lập phương trình

Luyện tập chung trang 28

Bài tập cuối chương 6

Chương 7. Tần số và tần số tương đối

Bài 22. Bảng tần số và biểu đồ tần số

Bài 23. Bảng tần số tương đối và biểu đồ tần số tương đối

Luyện tập chung trang 43

Bài 24. Bảng tần số, tần số tương đối ghép nhóm và biểu đồ

Bài tập cuối chương 7

Chương 8. Xác suất của biến cố trong một số mô hình xác suất đơn giản

Bài 25. Phép thử ngẫu nhiên và không gian mẫu

Bài 26. Xác suất của biến cố liên quan tới phép thử

Luyện tập chung trang 64

Bài tập cuối chương 8

Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp

Bài 27. Góc nội tiếp

Bài 28. Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác

Luyện tập chung trang 78

Bài 29. Tứ giác nội tiếp

Bài 30. Đa giác đều

Luyện tập chung trang 90

Bài tập cuối chương 9

Chương 10. Một số hình khối trong thực tiễn

Bài 31. Hình trụ và hình nón

Bài 32. Hình cầu

Luyện tập chung trang 106

Bài tập cuối chương 10

Hoạt động thực hành trải nghiệm

Giải phương trình, hệ phương trình và vẽ đồ thị hàm số với phần mềm GeoGebra

Vẽ hình đơn giản với phần mềm GeoGebra

Xác định tần số, tần số tương đối, vẽ các biểu đồ biểu diễn bảng tần số, tần số tướng đối bằng Excel

Gene trội trong các thế hệ lai