Giải bài tập HĐ2 trang 82 Toán 8 Tập 1 | Toán 8 - Kết nối tri thức
Hướng dẫn giải chi tiết từng bước bài tập HĐ2 trang 82 Toán 8 Tập 1. Bài 16. Đường trung bình của tam giác. Toán 8 - Kết nối tri thức
Đề bài:
Cho DE là đường trung bình của tam giác ABC (H.4.15).
Đáp án và cách giải chi tiết:
Ta có: F là trung điểm của BC nên CF = BC, suy ra .
Mà E là trung điểm của AC nên CE = CA, suy ra .
Do đó trong DABC có , theo định lí Thalès đảo ta có: EF // AB.
Xét tứ giác DEFB có DE // BF (vì DE // BC, theo HĐ1); EF // BD (vì EF // AB)
Do đó tứ giác DEFB là hình bình hành.
Suy ra DE = BF mà BF = BC nên DE = BC.
Nguồn: loigiaitoan.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Bài tập liên quan:
Mở đầu trang 81 Toán 8 Tập 1
Cho B và C là hai điểm cách nhau bởi một hồ nước như Hình 4.12 với D, E lần lượt là trung điểm của AB và AC. Biết DE = 500 m, liệu không cần đo trực tiếp, ta có thể tính được khoảng cách giữa hai điểm B và C không?
Câu hỏi trang 81 Toán 8 Tập 1
Em hãy chỉ ra các đường trung bình của ∆DEF và ∆IHK trong Hình 4.14.
HĐ1 trang 82 Toán 8 Tập 1
Cho DE là đường trung bình của tam giác ABC (H.4.15).
Sử dụng định lí Thalès đảo, chứng minh rằng DE // BC.
Luyện tập trang 83 Toán 8 Tập 1
Cho tam giác ABC cân tại A, D và E lần lượt là trung điểm của AB, AC. Tứ giác DECB là hình gì? Tại sao?
Vận dụng trang 83 Toán 8 Tập 1
Em hãy trả lời câu hỏi trong tình huống mở đầu.
Cho B và C là hai điểm cách nhau bởi một hồ nước như Hình 4.12 với D, E lần lượt là trung điểm của AB và AC. Biết DE = 500 m, liệu không cần đo trực tiếp, ta có thể tính được khoảng cách giữa hai điểm B và C không?
Bài 4.7 trang 83 Toán 8 Tập 1
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC.
a) Chứng minh tứ giác BMNC là hình thang.
b) Tứ giác MNPB là hình gì? Tại sao?
Bài 4.8 trang 83 Toán 8 Tập 1
Cho tam giác ABC có trung tuyến AM. Lấy điểm D và E trên cạnh AB sao cho AD = DE = EB và D nằm giữa hai điểm A, E.
a) Chứng minh DC // EM.
b) DC cắt AM tại I. Chứng minh I là trung điểm của AM.
Bài 4.9 trang 83 Toán 8 Tập 1
Cho hình chữ nhật ABCD có AC cắt BD tại O. Gọi H, K lần lượt là trung điểm của AB, AD. Chứng minh tứ giác AHOK là hình chữ nhật.