Giải bài tập HĐ1 trang 82 Toán 8 Tập 1 | Toán 8 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập HĐ1 trang 82 Toán 8 Tập 1. Bài 16. Đường trung bình của tam giác. Toán 8 - Kết nối tri thức

Đề bài:

Cho DE là đường trung bình của tam giác ABC (H.4.15).

Sử dụng định lí Thalès đảo, chứng minh rằng DE // BC.

Đáp án và cách giải chi tiết:

Ta có DE là đường trung bình của tam giác ABC nên:

• D là trung điểm của AB hay AD = 12AB nên ADAB=12

• E là trung điểm của AC hay AE = 12AC nên AEAC=12.

Xét tam giác ABC có ADAB=AEAC=12, theo định lí Thalès đảo, ta suy ra  DE // BC (đpcm).

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Mở đầu trang 81 Toán 8 Tập 1

Cho B và C là hai điểm cách nhau bởi một hồ nước như Hình 4.12 với D, E lần lượt là trung điểm của AB và AC. Biết DE = 500 m, liệu không cần đo trực tiếp, ta có thể tính được khoảng cách giữa hai điểm B và C không?

Câu hỏi trang 81 Toán 8 Tập 1

Em hãy chỉ ra các đường trung bình của ∆DEF và ∆IHK trong Hình 4.14.

HĐ2 trang 82 Toán 8 Tập 1

Cho DE là đường trung bình của tam giác ABC (H.4.15).

Luyện tập trang 83 Toán 8 Tập 1

Cho tam giác ABC cân tại A, D và E lần lượt là trung điểm của AB, AC. Tứ giác DECB là hình gì? Tại sao?

Vận dụng trang 83 Toán 8 Tập 1

Em hãy trả lời câu hỏi trong tình huống mở đầu.

Cho B và C là hai điểm cách nhau bởi một hồ nước như Hình 4.12 với D, E lần lượt là trung điểm của AB và AC. Biết DE = 500 m, liệu không cần đo trực tiếp, ta có thể tính được khoảng cách giữa hai điểm B và C không?

Bài 4.6 trang 83 Toán 8 Tập 1

Tính các độ dài x, y trong Hình 4.18.

Bài 4.7 trang 83 Toán 8 Tập 1

Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC.

a) Chứng minh tứ giác BMNC là hình thang.

b) Tứ giác MNPB là hình gì? Tại sao?

Bài 4.8 trang 83 Toán 8 Tập 1

Cho tam giác ABC có trung tuyến AM. Lấy điểm D và E trên cạnh AB sao cho AD = DE = EB và D nằm giữa hai điểm A, E.

a) Chứng minh DC // EM.

b) DC cắt AM tại I. Chứng minh I là trung điểm của AM.

Bài 4.9 trang 83 Toán 8 Tập 1

Cho hình chữ nhật ABCD có AC cắt BD tại O. Gọi H, K lần lượt là trung điểm của AB, AD. Chứng minh tứ giác AHOK là hình chữ nhật.

Giải bài tập Toán 8 - Kết nối tri thức

Chương 1. Đa thức

Bài 1. Đơn thức

Bài 2. Đa thức

Bài 3. Phép cộng và phép trừ đa thức

Luyện tập chung Chương 1 trang 17

Bài 4. Phép nhân đa thức

Bài 5. Phép chia đa thức cho đơn thức

Luyện tập chung Chương 1 trang 25

Bài tập cuối Chương 1 Đa thức

Chương 2. Hằng đẳng thức đáng nhớ và ứng dụng

Bài 6. Hiệu hai bình phương. Bình phương của một tổng hay một hiệu

Bài 7. Lập phương của một tổng hay một hiệu

Bài 8. Tổng và hiệu hai lập phương.

Luyện tập chung chương 2 trang 41

Bài 9. Phân tích đa thức thành nhân tử

Luyện tập chung chương 2 trang 45

Bài tập cuối chương 2 Hằng đẳng thức đáng nhớ và ứng dụng

Chương 3. Tứ giác

Bài 10. Tứ giác

Bài 11. Hình thang cân

Luyện tập chung chương 3 trang 56

Bài 12. Hình bình hành

Luyện tập chung chương 3 trang 63

Bài 13. Hình chữ nhật

Bài 14. Hình thoi và hình vuông

Luyện tập chung chương 3 trang 73

Bài tập cuối chương 3 Tứ giác

Chương 4. Định lý Thales

Bài 15. Định lí Thalès trong tam giác

Bài 16. Đường trung bình của tam giác

Bài 17. Tính chất đường phân giác của tam giác

Luyện tập chung chương 4 trang 88

Bài tập cuối chương 4 Định lý Thales

Chương 5. Dữ liệu và biểu đồ

Bài 18. Thu thập và phân loại dữ liệu

Bài 19. Biểu diễn dữ liệu bằng bảng, biểu đồ

Bài 20. Phân tích số liệu thống kê dựa vào biểu đó

Luyện tập chung Chương 5 trang 108

Bài tập cuối chương 5 Dữ liệu và biểu đồ

Hoạt động thực hành và trải nghiệm

Công thức lãi kép

Thực hiện tính toán trên đa thức với phần mềm GeoGebra

Vẽ hình đơn giản với phần mềm GeoGebra

Phân tích đặc điểm khí hậu Việt Nam

Chương 6. Phân thức đại số

Bài 21. Phần thức đại số

Bài 22. Tính chất cơ bản của phân thức đại số

Luyện tập chung chương 6 trang 14

Bài 23. Phép cộng và phép trừ phân thức đại số

Bài 24. Phép nhân và phép chia phân thức đại số

Bài tập cuối chương 6 Phân thức đại số

Chương 7. Phương trình bậc nhất và hàm số bậc nhất

Bài 25. Phương trình bậc nhất một ẩn.

Bài 26. Giải bài toán bằng cách lập phương trình.

Luyện tập chung chương 7 trang 37.

Bài 27. Khái niệm hàm số và đồ thị của hàm số.

Bài 28. Hàm số bậc nhất và đô thị của hàm số bậc nhất.

Bài 29. Hệ số góc của đường thẳng.

Luyện tập chung chương 7 trang 55.

Bài tập cuối chương VII.

Chương 8. Mở đầu về tính xác suất của biến cố

Bài 30. Kết quả có thể và kết quả thuận lợi.

Bài 31. Cách tính xác suất của biến cố bằng tỉ số.

Bài 32. Mối liên hệ giữa xác suất thực nghiệm với xác suất và ứng dụng.

Luyện tập chung chương 8 trang 74.

Bài tập cuối chương VIII.

Chương 9. Tam giác đồng dạng

Bài 33. Hai tam giác đồng dạng.

Bài 34. Ba trường hợp đồng dạng của hai tam giác.

Luyện tập chung chương 9 trang 91.

Bài 35. Định lí Pythagore và ứng dụng.

Bài 36. Các trường hợp đồng dạng của hai tam giác vuông.

Bài 37. Hình đồng dạng.

Luyện tập chung chương 9 trang 108.

Bài tập cuối chương IX.

Chương 10. Một số hình khối trong thực tiễn

Bài 38. Hình chóp tam giác đều.

Bài 39. Hình chóp tứ giác đều.

Luyện tập chung chương 10 trang 121.

Bài tập cuối chương X.

Hoạt động thực hành và trải nghiệm

Một vài ứng dụng của hàm số bậc nhất trong tài chính.

Ứng dụng định lí Thales, định lí Pythagore và tam giác đồng dạng để đo chiều cao, khoảng cách.

Thực hành tính toán trên phân thức đại số và vẽ đồ thị hàm số với phần mềm GeoGebra.

Mô tả thí nghiệm ngẫu nhiên với phần mềm Excel.