Giải bài tập Bài 9.27 trang 89 Toán 9 Tập 2 | Toán 9 - Kết nối tri thức
Hướng dẫn giải chi tiết từng bước bài tập Bài 9.27 trang 89 Toán 9 Tập 2. Bài 30. Đa giác đều. Toán 9 - Kết nối tri thức
Đề bài:
Cho hình thoi ABCD có Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng MBNPDQ là lục giác đều.
Đáp án và cách giải chi tiết:
⦁ Vì ABCD là hình thoi nên AB = BC = CD = DA.
Vì M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA nên MA = MB = AB; NB = NC = BC; PC = PD = CD; QD = QA = DA.
Do đó AM = MB = NB = NC = PC = PD = QD = QA = AB. (1)
Xét ∆ABD có AB = AD nên ∆ABD cân tại A, lại có nên ∆ABD là tam giác đều. Do đó AB = BD (2) và
Lại có M, Q là lần lượt là trung điểm của AB, AD nên MQ là đường trung bình của tam giác. Do đó MQ // BD và MQ = BD. (3)
Chứng minh tương tự, ta cũng có NP = BD. (4)
Từ (1), (2), (3) và (4) suy ra MB = BN = NP = PD = DQ = QM.
⦁ Vì MQ // BD nên (so le trong).
Mà (hai góc kề bù)
Suy ra
Tương tự, ta có
Tam giác BCD có BC = CD và (tính chất hình thoi) nên ∆BCD là tam giác đều. Do đó
Ta có
Khi đó,
Như vậy MBNPDQ có các cạnh bằng nhau và các góc bằng nhau.
Vậy MBNPDQ là lục giác đều.
Nguồn: loigiaitoan.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Bài tập liên quan:
HĐ1 trang 84 Toán 9 Tập 2
Ta đã biết các tam giác đều và hình vuông có các đỉnh nằm trên một đường tròn. Ta dựng một đa giác lồi 5 cạnh có các đỉnh nằm trên một đường tròn như sau:
– Vẽ đường tròn tâm O bán kính R.
– Lần lượt lấy các điểm A, B, C, D, E trên đường tròn theo thứ tự ngược chiều kim đồng hồ (hoặc theo chiều kim đồng hồ) sao cho:
Em hãy giải thích vì sao các cạnh và các góc của đa giác ABCDE bằng nhau (H.9.39).
Câu hỏi trang 85 Toán 9 Tập 2
Nếu một lục giác đều (đa giác đều 6 cạnh) nội tiếp đường tròn bán kính 2 cm (H.9.40) thì độ dài các cạnh của lục giác đều bằng bao nhiêu centimét? Số đo các góc của lục giác đều bằng bao nhiêu độ?
Luyện tập 1 trang 86 Toán 9 Tập 2
Cho M, N, P, Q, K lần lượt là trung điểm của các cạnh AB, BC, CD, DE và EA của ngũ giác đều ABCDE (H.9.44). Hỏi MNPQK có phải là ngũ giác đều hay không?
Thử thách nhỏ 1 trang 87 Toán 9 Tập 2
Cho một bát giác đều (đa giác đều 8 cạnh) nội tiếp một đường tròn tâm O (H.9.45). Hỏi mỗi góc của bát giác đều có số đo bằng bao nhiêu?
HĐ2 trang 87 Toán 9 Tập 2
Để bày bàn ăn cho nhiều người, các nhà hàng thường sử dụng bàn xoay có dạng hình tròn và quay được quanh tâm của hình tròn. Đặt một chiếc cốc nhỏ ở vị trí điểm A trên bàn xoay có dạng hình tròn với tâm O sao cho điểm A khác điểm O. Khi quay bàn xoay thuận chiều quay của kim đồng hồ (H.9.46) thì chiếc cốc di chuyển đến một vị trí mới là điểm B.
Em hãy so sánh khoảng cách từ hai điểm A và B đến điểm O. Hai điểm A, B có cùng nằm trên một đường tròn tâm O hay không?
HĐ3 trang 87 Toán 9 Tập 2
Trên bàn xoay tâm O, vẽ tam giác đều ABC nội tiếp một đường tròn (O) và hai tia OA, OB (H.9.47). Khi quay bàn xoay thuận chiều quay của kim đồng hồ để tia OA di chuyển trùng với tia OB (ở vị trí ban đầu), điểm A có di chuyển đến vị trí của điểm B không và sẽ di chuyển trên cung tròn nào của đường tròn (O)? Khi đó, điểm C sẽ di chuyển đến vị trí của điểm nào?
Câu hỏi trang 88 Toán 9 Tập 2:
a) Phép quay ngược chiều 180° tâm O biến điểm A thành điểm A’. Hỏi điểm A’ có đối xứng với điểm A qua O hay không?
b) Nếu phép quay thuận chiều α° tâm O biến điểm A thành điểm B thì phép quay ngược chiều α° tâm O có biến điểm B thành điểm A hay không?
Luyện tập 2 trang 88 Toán 9 Tập 2
Cho hình vuông ABCD nội tiếp đường tròn (O) như Hình 9.50.
a) Phép quay thuận chiều 90° tâm O biến các điểm A, B, C, D thành những điểm nào? Phép quay này có giữ nguyên hình vuông ABCD không?
b) Hãy liệt kê thêm ba phép quay khác với tâm O theo chiều kim đồng hồ giữ nguyên hình vuông ABCD.
Thực hành trang 88 Toán 9 Tập 2
Cho điểm O và điểm A khác điểm O (H.9.51).
Phép quay ngược chiều 60° tâm O biến điểm A thành điểm A’: Xác định điểm A’ theo hướng dẫn sau: Vẽ đường tròn (O; OA) và tia Ox sao cho tia Ox cắt đường tròn (O; OA) tại điểm A’ (H.9.51).
Thử thách nhỏ 2 trang 89 Toán 9 Tập 2
Hãy liệt kê 6 phép quay giữ nguyên một lục giác đều nội tiếp một đường tròn (O).
Bài 9.24 trang 89 Toán 9 Tập 2
Trong các hình phẳng sau (H.9.52), hình nào là hình phẳng có dạng đa giác đều?
Bài 9.25 trang 89 Toán 9 Tập 2
Trong các hình dưới đây (H.9.53), hình nào vẽ hai điểm M và N thỏa mãn phép quay thuận chiều 60° tâm O biến điểm M thành điểm N?
Bài 9.26 trang 89 Toán 9 Tập 2
Cho tam giác đều ABC nội tiếp đường tròn (O) bán kính 2 cm. Tính độ dài các cạnh của tam giác ABC.
Bài 9.28 trang 89 Toán 9 Tập 2
Cho tam giác đều ABC nội tiếp đường tròn (O) như Hình 9.54. Phép quay ngược chiều 60° tâm O biến các điểm A, B, C lần lượt thành các điểm D, E, F. Chứng minh rằng ADBECF là một lục giác đều.
Bài 9.29 trang 89 Toán 9 Tập 2
Liệt kê năm phép quay giữ nguyên một ngũ giác đều nội tiếp một đường tròn tâm O.
Bài 9.30 trang 89 Toán 9 Tập 2
Cho vòng quay mặt trời gồm tám cabin như Hình 9.55. Hỏi để cabin A di chuyển đến vị trí cao nhất thì vòng quay phải quay thuận chiều quay của kim đồng hồ quanh tâm bao nhiêu độ?