Giải bài tập Bài 9 trang 89 Toán 8 Tập 1 | Toán 8 - Chân trời sáng tạo
Hướng dẫn giải chi tiết từng bước bài tập Bài 9 trang 89 Toán 8 Tập 1. Bài tập cuối chương 3 Định lý Pythagore. Các loại tứ giác thường gặp. Toán 8 - Chân trời sáng tạo
Đề bài:
Bài 9 trang 89 Toán 8 Tập 1: Cho tam giác ABC cân tại A. Gọi H, D lần lượt là trung điểm của các cạnh BC và AB.
a) Chứng minh rằng tứ giác ADHC là hình thang.
b) Gọi E là điểm đối xứng với H qua D. Chứng minh rằng tứ giác AHBE là hình chữ nhật.
c) Tia CD cắt AH tại M và cắt BE tại N. Chứng minh rằng tứ giác AMBN là hình bình hành.
Đáp án và cách giải chi tiết:
a) • Do DABC cân tại A nên và AB = AC.
Vì AB = AC nên A nằm trên đường trung trực của BC.
Vì H là trung điểm của BC nên H nằm trên đường trung trực của BC.
Do đó AH là đường trung trực của BC nên AH ⊥ BC.
• Xét DAHB vuông tại H có HD là đường trung tuyến ứng với cạnh huyền AB nên bằng nửa cạnh huyền AB.
Do đó
• Tam giác DBH có DB = DH nên là tam giác cân tại D
Suy ra hay
Lại có (chứng minh trên) nên
Mà hai góc này ở vị trí đồng vị nên DH // AC.
• Xét tứ giác ADHC có DH // AC nên là hình thang.
b) Do E là điểm đối xứng với H qua D nên D là trung điểm của HE.
Xét tứ giác AHBE có hai đường chéo AB và HE cắt nhau tại trung điểm D của mỗi đường.
Suy ra AHBE là hình bình hành.
Lại có (do AH ⊥ BC) nên hình bình hành AHBE là hình chữ nhật.
c) • Do AHBE là hình chữ nhật nên AH // BE hay MH // NE
Suy ra (so le trong).
• Xét DMHD và DNED có:
(chứng minh trên);
DH = DE (do E là điểm đối xứng với H qua D);
(đối đỉnh).
Do đó DMHD = DNED (g.c.g)
Suy ra DM = DN (hai cạnh tương ứng).
Hay D là trung điểm của NM.
• Xét tứ giác AMBN có hai đường chéo AB và NM cắt nhau tại trung điểm D của mỗi đường
Suy ra AMBN là hình bình hành.
Nguồn: loigiaitoan.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Bài tập liên quan:
Bài 1 trang 88 Toán 8 Tập 1
Bài 1 trang 88 Toán 8 Tập 1: Bạn Nam dùng 6 đoạn tre vót thẳng để làm khung diều hình thoi. Trong đó có 2 đoạn tre dài 60 cm và 80 cm để làm hai đường chéo của cái diều, 4 đoạn tre còn lại là 4 cạnh của cái diều. Khi đó tổng độ dài 4 đoạn tre dùng làm cạnh của cái diều hình thoi là
A. 5 m.
B. 1 m.
C. 1,5 m.
D. 2 m.
Bài 2 trang 88 Toán 8 Tập 1
Bài 2 trang 88 Toán 8 Tập 1: Cho hình thang cân ABCD (AB // CD) có . Số đo góc C là
A. 115°.
B. 95°.
C. 65°.
D. 125°.
Bài 3 trang 88 Toán 8 Tập 1
Bài 3 trang 88 Toán 8 Tập 1: Trong các khẳng định sau, khẳng định nào sai?
A. Tứ giác có ba góc vuông là hình chữ nhật.
B. Hình bình hành có một góc vuông là hình chữ nhật.
C. Hình bình hành có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình chữ nhật.
D. Tứ giác có các cạnh đối bằng nhau là hình bình hành.
Bài 4 trang 88 Toán 8 Tập 1
Bài 4 trang 88 Toán 8 Tập 1: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Biết AB = 8 cm; AC = 15 cm. Độ dài đoạn AM là
A. 8,5 cm.
B. 8 cm.
C. 7 cm.
D. 7,5 cm.
Bài 5 trang 88 Toán 8 Tập 1
Bài 5 trang 88 Toán 8 Tập 1: Cho hình thoi ABCD có cạnh bằng 13 cm, độ dài đường chéo AC là 10 cm. Độ dài đường chéo BD là
A. 24 cm.
B. 12 cm.
C. 16 cm.
D. 20 cm.
Bài 6 trang 88 Toán 8 Tập 1
Bài 6 trang 88 Toán 8 Tập 1: Trong các khẳng định sau, khẳng định nào đúng?
A. Hình chữ nhật có hai đường chéo bằng nhau là hình vuông.
B. Hình thoi có hai đường chéo vuông góc là hình vuông.
C. Hình thoi có một góc vuông là hình vuông.
D. Hình chữ nhật có một góc vuông là hình vuông.
Bài 7 trang 88 Toán 8 Tập 1
Bài 7 trang 88 Toán 8 Tập 1: Cho tứ giác ABCD, biết . Khi đó số đo góc C là
A. 120°.
B. 110°.
C. 130°.
D. 80°.
Bài 8 trang 89 Toán 8 Tập 1
Bài 8 trang 89 Toán 8 Tập 1: Cho hình bình hành ABCD. Các điểm E, F thuộc đường chéo AC sao cho AE = EF = FC. Gọi M là giao điểm của BF và CD, N là giao điểm của DE và AB. Chứng minh rằng:
a) M, N theo thứ tự là trung điểm của CD, AB;
b) EMFN là hình bình hành.
Bài 10 trang 89 Toán 8 Tập 1
Bài 10 trang 89 Toán 8 Tập 1: Cho tam giác ABC vuông tại A (AB < AC). Gọi M, N, E lần lượt là trung điểm của AB, AC, BC.
a) Chứng minh rằng tứ giác ANEB là hình thang vuông.
b) Chứng minh rằng tứ giác ANEM là hình chữ nhật.
c) Qua M kẻ đường thẳng song song với BN cắt tia EN tại F. Chứng minh rằng tứ giác AFCE là hình thoi.
d) Gọi D là điểm đối xứng của E qua M. Chứng minh rằng A là trung điểm của DF.
Bài 11 trang 89 Toán 8 Tập 1
Bài 11 trang 89 Toán 8 Tập 1: Cho hình bình hành ABCD có AB = 2AD. Gọi E và F lần lượt là trung điểm của AB và CD, I là giao điểm của AF và DE, K là giao điểm của BF và CE.
a) Chứng minh rằng tứ giác AECF là hình bình hành.
b) Tứ giác AEFD là hình gì? Vì sao?
c) Chứng minh rằng tứ giác EIFK là hình chữ nhật.
d) Tìm điều kiện của hình bình hành ABCD để tứ giác EIFK là hình vuông.
Bài 12 trang 89 Toán 8 Tập 1
Bài 12 trang 89 Toán 8 Tập 1: Cho hình bình hành ABCD có AD = 2AB. Từ C vẽ CE vuông góc với AB tại E. Nối E với trung điểm M của AD. Từ M vẽ MF vuông góc với CE tại F, MF cắt BC tại N.
a) Tứ giác MNCD là hình gì?
b) Chứng minh tam giác EMC cân tại M.
c) Chứng minh rằng
Hướng dẫn:
b) Chứng minh
c) Chứng minh