Giải bài tập Toán 8 Bài 5. Hình chữ nhật – Hình vuông | Chân trời sáng tạo
Hướng dẫn giải chi tiết Bài 5. Hình chữ nhật – Hình vuông. Tính chất và dấu hiệu nhận biết Hình chữ nhật – Hình vuông.
Khởi động trang 82 Toán 8 Tập 1
Khởi động trang 82 Toán 8 Tập 1: Mỗi viên gạch trong hình bức tường có bề mặt hình chữ nhật được minh hoạ bởi hình bên. Hãy vẽ hình tứ giác ABCD mô phỏng bề mặt một viên gạch vào vở của em.
Khám phá 1 trang 82 Toán 8 Tập 1
Khám phá 1 trang 82 Toán 8 Tập 1: Dùng thước đo góc để đo số đo các góc ở Hình 1 và rút ra nhận xét về số đo của chúng.
Khám phá 2 trang 82 Toán 8 Tập 1
Khám phá 2 trang 82 Toán 8 Tập 1: Cho ABCD là hình chữ nhật.
a) Chứng minh AB // CD và AD // BC.
b) Tam giác ABD và tam giác BAC có bằng nhau không? Vì sao?
Khám phá 3 trang 83 Toán 8 Tập 1
Khám phá 3 trang 83 Toán 8 Tập 1: Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Giải thích các khẳng định sau:
a) Nếu là góc vuông thì và cũng là góc vuông.
b) Nếu AC = BD thì vuông.
Khám phá 4 trang 84 Toán 8 Tập 1
Khám phá 4 trang 84 Toán 8 Tập 1: Cho tứ giác ABCD có bốn góc bằng nhau và có bốn cạnh bằng nhau. Hãy chứng tỏ ABCD vừa là hình thoi vừa là hình chữ nhật.
Khám phá 5 trang 85 Toán 8 Tập 1
Khám phá 5 trang 85 Toán 8 Tập 1: Cho hình vuông MNPQ. Chứng minh MNPQ vừa là hình chữ nhật vừa là hình thoi.
Khám phá 6 trang 85 Toán 8 Tập 1
Khám phá 6 trang 85 Toán 8 Tập 1: Cho hình chữ nhật ABCD. Giải thích tại sao ABCD là hình vuông trong mỗi trường hợp sau:
Trường hợp 1: AB = BC.
Trường hợp 2: AC vuông góc với BD.
Trường hợp 3: AC là đường phân giác của góc BAD.
Khám phá 7 trang 86 Toán 8 Tập 1
Khám phá 7 trang 86 Toán 8 Tập 1: Cho hình thoi ABCD. Hãy chứng tỏ:
a) Nếu là góc vuông thì ba góc còn lại của hình thoi cũng là góc vuông.
b) Nếu AC = BD thì là góc vuông.
Thực hành 1 trang 83 Toán 8 Tập 1
Thực hành 1 trang 83 Toán 8 Tập 1: Cho biết a, b, d lần lượt là độ dài các cạnh và đường chéo của một hình chữ nhật. Thay dấu ? trong bảng sau bằng giá trị thích hợp.
Thực hành 2 trang 84 Toán 8 Tập 1
Thực hành 2 trang 84 Toán 8 Tập 1: Chỉ được sử dụng compa, hãy kiểm tra tứ giác ở Hình 6 có phải là hình chữ nhật hay không.
Thực hành 3 trang 85 Toán 8 Tập 1
Thực hành 3 trang 85 Toán 8 Tập 1: Tìm hình vuông trong hai hình sau:
Thực hành 4 trang 86 Toán 8 Tập 1
Thực hành 4 trang 86 Toán 8 Tập 1: Trong Hình 12, cho biết ABCD là một hình vuông. Chứng minh rằng:
a) Tứ giác EFGH có ba góc vuông;
b) HE = HG;
c) Tứ giác EFGH là một hình vuông.
Vận dụng 1 trang 83 Toán 8 Tập 1
Vận dụng 1 trang 83 Toán 8 Tập 1: Tìm bốn ví dụ về hình chữ nhật trong thực tế.
Vận dụng 2 trang 84 Toán 8 Tập 1
Vận dụng 2 trang 84 Toán 8 Tập 1:
a) Hãy sử dụng êke sao cho chỉ sau ba lần đo ta có thể xác định khung cửa sổ ở Hình 7 có phải là hình chữ nhật hay không.
b) Hãy sử dụng một cuộn dây, xác định khung cửa sổ trong Hình 7 có là hình chữ nhật hay không.
Vận dụng 3 trang 85 Toán 8 Tập 1
Vận dụng 3 trang 85 Toán 8 Tập 1: Tìm bốn ví dụ về hình vuông trong thực tế.
Vận dụng 4 trang 86 Toán 8 Tập 1
Vận dụng 4 trang 86 Toán 8 Tập 1: Bạn Nam kiểm tra mặt kính của chiếc đồng hồ để bàn và nhận thấy có ba góc vuông và hai cạnh kề bằng nhau (Hình 13). Hãy cho biết mặt kính đồng hồ có hình gì?
Bài 2 trang 87 Toán 8 Tập 1
Bài 2 trang 87 Toán 8 Tập 1: Cho Hình 15. Vẽ thêm điểm P để tứ giác MNPQ là hình chữ nhật.
Bài 3 trang 87 Toán 8 Tập 1
Bài 3 trang 87 Toán 8 Tập 1: Cho tam giác ABC có đường cao AH. Gọi I là trung điểm của AC, E là điểm đối xứng với H qua I. Gọi M, N lần lượt là trung điểm của HC, CE. Các đường thẳng AM, AN cắt HE tại G và K.
a) Chứng minh tứ giác AHCE là hình chữ nhật.
b) Chứng minh HG = GK = KE.
Bài 4 trang 87 Toán 8 Tập 1
Bài 4 trang 87 Toán 8 Tập 1: Cho tam giác ABC vuông tại A (AB < AC). Gọi D là trung điểm của BC. Vẽ DE // AB, vẽ DF // AC (E ∈ AC, F ∈ AB). Chứng minh rằng:
a) Tứ giác AEDF là hình chữ nhật.
b) Tứ giác BFED là hình bình hành.
Bài 5 trang 87 Toán 8 Tập 1
Bài 5 trang 87 Toán 8 Tập 1: Lấy một tờ giấy, gấp làm tư để có một góc vuông như trong Hình 16, dùng kéo cắt theo đường MN sao cho OM = ON. Mở phần giấy cắt được ra ta được một tứ giác.
Tứ giác đó là hình gì? Giải thích kết luận của em.