Giải bài tập Bài 6 trang 59 Toán lớp 10 Tập 1 | Toán 10 - Chân trời sáng tạo

Hướng dẫn giải chi tiết từng bước bài tập Bài 6 trang 59 Toán lớp 10 Tập 1. Bài tập cuối chương 3. Toán 10 - Chân trời sáng tạo

Đề bài:

Bài 6 trang 59 Toán lớp 10 Tập 1: Nhảy bungee là một trò chơi mạo hiểm. Trong trò chơi này, người chơi đứng ở vị trí trên cao, thắt dây an toàn và nhảy xuống. Sợi dây này có tính đàn hồi và được tính toán chiều dài để nó kéo người chơi lại khi gần chạm đất (hoặc mặt nước).

Chiếc cầu trong Hình 1 có bộ phận chống đỡ dạng parabol. Một người thực hiện một cú nhảy bungee từ giữa cầu xuống với dây an toàn. Người này cần trang bị sợi dây an toàn dài bao nhiêu mét? Biết rằng chiều dài của sợi dây đó bằng một phần ba khoảng cách từ vị trí bắt đầu nhảy đến mặt nước.

Đáp án và cách giải chi tiết:

Lời giải:

Ta có sơ đồ sau:

Bài 6 trang 59 Toán 10 Tập 1 Chân trời sáng tạo | Giải Toán lớp 10

Điểm A là vị trí nhảy của người đó, E và F là chân bộ phận chống đỡ cầu.

Vì bộ phận chống đỡ cầu có dạng parabol (P) nên có phương trình: y = ax2 + bx + c.

Đoạn EF = 48 + 117 = 165 m, OE = EF : 2 = 165:2 = 82,5m

⇒ OH = OE – EH = 34,5 m

Khi đó tọa độ D(34,5; 46,2), E(-82,5; 0) và F(82,5; 0).

Vì các điểm D, E, F thuộc đồ thị hàm số (P) nên ta có hệ phương trình:

.82,52+.82,5+=0.82,52+.82,5+=0.34,52+.34,5+=46,2=779360=0=46565832

Suy ra parabol cần tìm là: y=-779360x2+46565832

Điểm B là điểm đỉnh nên có xB = 0 và yB = -779360.02+46565832

Do đó OB = 46565832 (m).

Khoảng cách từ vị trí nhảy đến mặt nước là:

AB + OB + OC = 1+46565832+4399,97 m.

Độ dài sợi dây là: 99,97: 3 = 33,32 m.

Vậy độ dài sợi dây là 33,32 m.

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Bài 1 trang 59 Toán lớp 10 Tập 1

Bài 1 trang 59 Toán lớp 10 Tập 1: Tìm tập xác định của các hàm số sau:

a) y = 4x2 – 1; 

b) y=1x2+1;

c) y=2+1x.

Bài 2 trang 59 Toán lớp 10 Tập 1

Bài 2 trang 59 Toán lớp 10 Tập 1: Tìm điều kiện của m để mỗi hàm số sau đây là một hàm số bậc hai:

a) y = (1 – 3m)x2 + 3;

b) y = (4m – 1)(x – 7)2;

c) y = 2(x2 + 1) + 11 – m.

Bài 3 trang 59 Toán lớp 10 Tập 1

Bài 3 trang 59 Toán lớp 10 Tập 1: Vẽ đồ thị các hàm số sau:

a) y = x2 – 4x + 3;

b) y = - x2 – 4x + 5;

c) y = x2 – 4x + 5;

d) y = -x2 – 2x – 1.

Bài 4 trang 59 Toán lớp 10 Tập 1

Bài 4 trang 59 Toán lớp 10 Tập 1: Một vận động viên chạy xe đạp trong 1 giờ 30 phút đầu với vận tốc trung bình là 42km/h. Sau đó người này nghỉ tại chỗ 15 phút và tiếp tục đạp xe 2 giờ liền với vận tốc 30km/h.

a) Hãy biểu thị quãng đường s (tính bằng ki lô mét) mà người này đi được sau t phút bằng một hàm số.

b) Vẽ đồ thị biểu diễn hàm số s theo t.

Bài 5 trang 59 Toán lớp 10 Tập 1

Bài 5 trang 59 Toán lớp 10 Tập 1: Biết rằng hàm số y = 2x2 + mx + n giảm trên khoảng (-∞; 1), tăng trên khoảng (1; + ∞) và có tập giá trị là [9; +∞). Xác định giá trị của m và n.

Bài 7 trang 59 Toán lớp 10 Tập 1

Bài 7 trang 59 Toán lớp 10 Tập 1: Giả sử một máy bay cứu trợ đang bay theo phương ngang và bắt đầu thả hàng từ độ cao 80m, lúc đó máy bay đang bay với vận tốc 50m/s. Để thùng hàng hỗ trợ rơi trúng vị trí được chọn, máy bay cần thả hàng ở vị trí nào? Biết rằng nếu chọn gốc tọa độ là hình chiếu trên mặt đất của vị trí hàng cứu trợ bắt đầu được thả, thì tọa độ của hàng cứu trợ được cho bởi hệ sau:

Trong đó, v0 là vận tốc ban đầu và h là độ cao tính từ khi hàng rời máy bay.

Lưu ý: Chuyển động này được xem là chuyển động ném ngang.

Bài 7 trang 59 Toán 10 Tập 1 Chân trời sáng tạo | Giải Toán lớp 10

Giải bài tập Toán 10 - Chân trời sáng tạo

Chương 1: Mệnh đề và tập hợp

Bài 1: Mệnh đề

Bài 2: Tập hợp

Bài 3: Các phép toán trên tập hợp

Bài tập cuối chương 1

Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Bài 1: Bất phương trình bậc nhất hai ẩn

Bài 2: Hệ bất phương trình bậc nhất hai ẩn

Bài tập cuối chương 2

Chương 3: Hàm số bậc hai và đồ thị

Bài 1: Hàm số và đồ thị

Bài 2: Hàm số bậc hai

Bài tập cuối chương 3

Chương 4: Hệ thức lượng trong tam giác

Bài 1: Giá trị lượng giác của một góc từ 0° đến 180°

Bài 2: Định lí côsin và định lí sin

Bài 3: Giải tam giác và ứng dụng thực tế

Bài tập cuối chương 4

Chương 5: Vectơ

Bài 1: Khái niệm vectơ

Bài 2: Tổng và hiệu của hai vectơ

Bài 3: Tích của một số với một vectơ

Bài 4: Tích vô hướng của hai vectơ

Bài tập cuối chương 5

Chương 6: Thống kê

Bài 1: Số gần đúng và sai số

Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ

Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu

Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu

Bài tập cuối chương 6

Hoạt động thực hành và trải nghiệm - Tập 1

Bài 1: Dùng máy tính cầm tay để tính toán với số gần đúng và tính các số đặc trưng của mẫu số liệu thống kê

Bài 2: Dùng bảng tính để tính các số đặc trưng của mẫu số liệu thống kê

Chương 7: Bất phương trình bậc hai một ẩn

Bài 1: Dấu của tam thức bậc hai

Bài 2: Giải bất phương trình bậc hai một ẩn

Bài 3: Phương trình quy về phương trình bậc hai

Bài tập cuối chương 7

Chương 8: Đại số tổ hợp

Bài 1: Quy tắc cộng và quy tắc nhân

Bài 2: Hoán vị, chỉnh hợp và tổ hợp

Bài 3: Nhị thức Newton

Bài tập cuối chương 8

Chương 9: Phương pháp toạ độ trong mặt phẳng

Bài 1: Toạ độ của vectơ

Bài 2: Đường thẳng trong mặt phẳng toạ độ

Bài 3: Đường tròn trong mặt phẳng toạ độ

Bài 4: Ba đường conic trong mặt phẳng toạ độ

Bài tập cuối chương 9

Chương 10: Xác suất

Bài 1: Không gian mẫu và biến cố

Bài 2: Xác suất của biến cố

Bài tập cuối chương 10

Hoạt động thực hành và trải nghiệm - Tập 2

Bài 1: Vẽ đồ thị hàm số bậc hai bằng phần mềm Geogebra

Bài 2: Vẽ ba đường conic bằng phần mềm Geogebra