Giải bài tập Bài 6 trang 127 Toán lớp 10 Tập 1 | Toán 10 - Chân trời sáng tạo
Hướng dẫn giải chi tiết từng bước bài tập Bài 6 trang 127 Toán lớp 10 Tập 1. Bài tập cuối chương 6. Toán 10 - Chân trời sáng tạo
Đề bài:
Bài 6 trang 127 Toán lớp 10 Tập 1: Độ tuổi của 22 cầu thủ ở đội hình xuất phát của hai đội bóng đá được ghi lại ở bảng sau:
a) Hãy tìm số trung bình, mốt, độ lệch chuẩn và tứ phân vị của tuổi mỗi cầu thủ của từng đội bóng.
b) Tuổi của các cầu thủ ở đội bóng nào đồng đều hơn? Tại sao?
Đáp án và cách giải chi tiết:
a)
* Đội A:
+ Số trung bình của tuổi:
+ Giá trị 24 có tần số lớn nhất (3) nên mốt của mẫu số liệu ở đội A là 24.
+ Phương sai mẫu:
(282 + 242 + 262 + 252 + 252 + 232 + 202 + 292 + 212 + 242 + 242) – (24,45)2
≈ 6,65.
+ Độ lệch chuẩn mẫu số liệu:
+ Sắp xếp các số liệu theo thứ tự không giảm, ta được:
20; 21; 23; 24; 24; 24; 25; 25; 26; 28; 29.
Vì cỡ mẫu là 11 là số lẻ nên tứ phân vị thứ hai là Q2A = 24.
Tứ phân vị thứ nhất là trung vị của mẫu: 20; 21; 23; 24; 24. Do đó Q1A = 23.
Tứ phân vị thứ ba là trung vị của mẫu: 25; 25; 26; 28; 29. Do đó Q3A = 26.
* Đội B:
+ Số trung bình của tuổi:
+ Giá trị 29 có tần số lớn nhất (3) nên mốt của mẫu số liệu ở đội B là 29.
+ Phương sai mẫu:
(322 + 202 + 192 + 212 + 282 + 292 + 212 + 222 + 292 + 192 + 292) – (24,45)2
≈ 22,11.
+ Độ lệch chuẩn mẫu số liệu: SB =
+ Sắp xếp các số liệu theo thứ tự không giảm, ta được:
19; 19; 20; 21; 21; 22; 28; 29; 29; 29; 32.
Vì cỡ mẫu là 11 là số lẻ nên tứ phân vị thứ hai là Q2B = 22.
Tứ phân vị thứ nhất là trung vị của mẫu: 19; 19; 20; 21; 21. Do đó Q1B = 20.
Tứ phân vị thứ ba là trung vị của mẫu: 28; 29; 29; 29; 32. Do đó Q3B = 29.
b) Ta thấy độ lệch chuẩn và phương sai mẫu số liệu ở đội B cao hơn đội A. Điều đó có nghĩa là tuổi của các cầu thủ ở đội B có độ phân tán cao hơn đội A.
Vậy tuổi của các cầu thủ ở đội A đồng đều hơn đội B.
Nguồn: loigiaitoan.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Bài tập liên quan:
Bài 1 trang 126 Toán lớp 10 Tập 1
Bài 1 trang 126 Toán lớp 10 Tập 1: Một hằng số quan trọng trong toán học là số e có giá trị gần đúng với 12 chữ số thập phân là 2,718281828459.
a) Giả sử ta lấy giá trị 2,7 làm giá trị gần đúng của e. Hãy chứng tỏ sai số tuyệt đối không vượt quá 0,02 và sai số tương đối không vượt quá 0,75%.
b) Hãy quy tròn e đến hàng phần nghìn.
c) Tìm số gần đúng của số e với độ chính xác 0,00002.
Bài 2 trang 126 Toán lớp 10 Tập 1
Bài 2 trang 126 Toán lớp 10 Tập 1: Cho các số gần đúng a = 54919020 ± 1000 và b = 5,7914003 ± 0,002. Hãy xác định số quy tròn của a và b.
Bài 3 trang 126 Toán lớp 10 Tập 1
Bài 3 trang 126 Toán lớp 10 Tập 1: Mỗi học sinh lớp 10A đóng góp 2 quyển sách cho thư viện trường. Lớp trưởng thống kê lại số sách mà mỗi tổ trong lớp đóng góp ở bảng sau:
Hãy cho biết lớp trưởng đã thống kê chính xác chưa. Tại sao?
Bài 4 trang 126 Toán lớp 10 Tập 1
Bài 4 trang 126 Toán lớp 10 Tập 1: Sản lượng nuôi tôm phân theo địa phương của các tỉnh Cà Mau và Tiền Giang được thể hiện ở hai biểu đồ sau (đơn vị: tấn):
a) Hãy cho biết các phát biểu sau là đúng hay sai:
i. Sản lượng nuôi tôm mỗi năm của tỉnh Tiền Giang đều cao hơn tỉnh Cà Mau.
ii. Ở tỉnh Cà Mau, sản lượng nuôi tôm năm 2018 tăng gấp hơn 4 lần so với năm 2008.
iii. Ở tỉnh Tiền Giang, sản lượng nuôi tôm năm 2018 tăng gấp hơn 2,5 lần so với năm 2008.
iv. Ở tỉnh Tiền Giang, từ năm 2008 đến năm 2018, sản lượng nuôi tôm mỗi năm tăng trên 50% so với năm cũ.
v. Trong vòng 5 năm từ năm 2013 đến 2018, sản lượng nuôi tôm của tỉnh Cà Mau tăng cao hơn của tỉnh Tiền Giang.
b) Để so sánh sản lượng nuôi tôm của hai tỉnh Cà Mau và Tiền Giang, ta nên sử dụng loại biểu đồ nào?
Bài 5 trang 127 Toán lớp 10 Tập 1
Bài 5 trang 127 Toán lớp 10 Tập 1: Bạn Châu cân lần lượt 50 quả vải thiều Thanh Hà được lựa chọn ngẫu nhiên từ vườn nhà mình và được kết quả như sau:
a) Hãy tìm số trung bình, trung vị, mốt của mẫu số liệu trên.
b) Hãy tìm độ lệch chuẩn, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ của mẫu số liệu trên.
Bài 7 trang 127 Toán lớp 10 Tập 1
Bài 7 trang 127 Toán lớp 10 Tập 1: Một cửa hàng bán xe ô tô thay đổi chiến lược kinh doanh vào cuối năm 2019. Số xe cửa hàng bán được mỗi tháng trong năm 2019 và 2020 được ghi lại ở bảng sau:
a) Hãy tính số trung bình, khoảng tứ phân vị và độ lệch chuẩn của số lượng xe bán được trong năm 2019 và năm 2020.
b) Nêu nhận xét về tác động của chiến lược kinh doanh mới lên số lượng xe bán ra hằng tháng.