Giải bài tập Bài 5.40 trang 113 Toán 9 Tập 1 | Toán 9 - Kết nối tri thức
Hướng dẫn giải chi tiết từng bước bài tập Bài 5.40 trang 113 Toán 9 Tập 1. Bài tập cuối chương 5. Toán 9 - Kết nối tri thức
Đề bài:
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Một đường thẳng d đi qua A cắt (O) tại E và cắt (O') tại F (E và F) khác A. Biết điểm A nằm trong đoạn EF. Gọi I và K lần lượt là trung điểm của AE và AF (H.5.46).
a) Chứng minh rằng tứ giác OO'KI là một hình thang vuông.
b) Chứng minh rằng
c) Khi d ở vị trí nào (d vẫn qua A) thì OO'KI là một hình chữ nhật?
Đáp án và cách giải chi tiết:
a) Tam giác OAE cân tại O có OI là trung tuyến nên OI cũng là đường cao.
Tam giác O'AF cân tại O có O'K là trung tuyến nên O'K cũng là đường cao.
Suy ra OI // O'K (vì cùng vuông góc với d).
Do đó OO'KI là hình thang.
Hình thang OO'KI có nên OO'KI là một hình thang vuông (đpcm).
b) Vì I là trung điểm của AE nên
Vì K là trung điểm của AF nên
Suy ra
Vậy
c) Hình thang OO′KI là hình chữ nhật khi và chỉ khi hay OI ⊥ OO′.
Mà d ⊥ OI nên d // OO′.
Vậy d vẫn qua A và d // OO′ thì OO'KI là một hình chữ nhật.
Nguồn: loigiaitoan.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Bài tập liên quan:
Bài 5.32 trang 112 Toán 9 Tập 1
Cho đường tròn (O; 4 cm) và hai điểm A, B. Biết rằng và OB = 4 cm. Khi đó:
A. Điểm A nằm trong (O), điểm B nằm ngoài (O).
B. Điểm A nằm ngoài (O), điểm B nằm trên (O).
C. Điểm A nằm trên (O), điểm B nằm trong (O).
D. Điểm A nằm trong (O), điểm B nằm trên (O).
Bài 5.33 trang 112 Toán 9 Tập 1
Cho hình 5.43, trong đó BD là đường kính,
Khi đó:
Bài 5.34 trang 112 Toán 9 Tập 1
Cho hai đường tròn (A; R1), (B; R2), trong đó R2 < R1. Biết rằng hai đường tròn (A) và (B) cắt nhau (H.5.44)
Khi đó:
A. AB < R1 − R2.
B. R1 − R2 < AB < R1 + R2.
C. AB > R1 + R2.
D. AB = R1 + R2.
Bài 5.35 trang 112 Toán 9 Tập 1
Cho đường tròn (O; R) và hai đường thẳng a1 và a2. Gọi d1, d2 lần lượt là khoảng cách từ điểm O đến a1 và a2. Biết rằng (O) cắt a1 và tiếp xúc với a2 (H.5.45).
Khi đó:
- d1 < R, d2 = R.
- d1 = R, d2 < R.
- d1 > R, d2 = R.
- d1 < R, d2 < R.
Bài 5.36 trang 112 Toán 9 Tập 1
Cho đường tròn (O) đường kính BC và điểm A (khác B và C).
a) Chứng minh rằng nếu A nằm trên (O) thì ABC là một tam giác vuông; ngược lại, nếu ABC là tam giác vuông tại A thì nằm trên (O).
b) Giả sử A là một trong hai giao điểm của đường tròn (B; BO) với đường tròn (O). Tính các góc của tam giác ABC.
c) Với cùng giả thiết câu b), tính độ dài cung AC và diện tích hình quạt nằm trong (O) giới hạn bởi các bán kính OA và OC, biết rằng BC = 6 cm.
Bài 5.37 trang 113 Toán 9 Tập 1
Cho AB là một dây bất kì (không phải là đường kính) của đường tròn (O; 4 cm). Gọi C và D lần lượt là các điểm đối xứng với A và B qua tâm O.
a) Hai điểm C và D có nằm trên đường tròn (O) không? Vì sao?
b) Biết rằng ABCD là một hình vuông. Tính độ dài cung lớn AB và diện tích hình quạt tròn tạo bởi hai bán kính OA và OB.
Bài 5.38 trang 113 Toán 9 Tập 1
Cho điểm B nằm giữa hai điểm A và C, sao cho AB = 2 cm và BC = 1 cm. Vẽ các đường tròn (A; 1,5 cm), (B; 3 cm) và (C; 2 cm). Hãy xác định các cặp đường tròn:
a) Cắt nhau;
b) Không giao nhau;
c) Tiếp xúc với nhau.
Bài 5.39 trang 113 Toán 9 Tập 1
Cho tam giác vuông ABC ( vuông). Vẽ hai đường tròn (B; BA) và (C; CA) cắt nhau tại A và A'. Chứng minh rằng:
a) BA và BA' là hai tiếp tuyến cắt nhau của (C; CA).
b) CA và CA' là hai tiếp tuyến cắt nhau của (B; BA).