Giải bài tập Bài 2 trang 9 Toán lớp 10 Tập 2 | Toán 10 - Chân trời sáng tạo
Hướng dẫn giải chi tiết từng bước bài tập Bài 2 trang 9 Toán lớp 10 Tập 2. Bài 1: Dấu của tam thức bậc hai. Toán 10 - Chân trời sáng tạo
Đề bài:
Bài 2 trang 9 Toán lớp 10 Tập 2: Xác định giá trị của m để đa thức sau là tam thức bậc hai.
a) (m + 1)x2 + 2x + m;
b) mx3 + 2x2 – x + m;
c) – 5x2 + 2x – m + 1.
Đáp án và cách giải chi tiết:
a) Để đa thức (m + 1)x2 + 2x + m là tam thức bậc hai thì hệ số của x2 phải khác 0.
Suy ra m + 1 ≠ 0 ⇔ m ≠ - 1.
Vậy với m ≠ - 1 thì đa thức (m + 1)x2 + 2x + m là tam thức bậc hai.
b) Để đa thức mx3 + 2x2 – x + m là tam thức bậc hai thì bậc cao nhất của đa thức là 2 do đó hệ số của x3 phải bằng 0 hay m = 0.
Vậy với m = 0 thì đa thức mx3 + 2x2 – x + m là tam thức bậc hai.
c) Để đa thức – 5x2 + 2x – m + 1 thỏa mãn là tam thức bậc hai với mọi m.
Nguồn: loigiaitoan.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Bài tập liên quan:
Bài 1 trang 9 Toán lớp 10 Tập 2
Bài 1 trang 9 Toán lớp 10 Tập 2: Đa thức nào sau đây là tam thức bậc hai?
a) 4x2 + 3x + 1;
b) x3 + 3x2 – 1;
c) 2x2 + 4x – 1.
Bài 3 trang 10 Toán lớp 10 Tập 2
Bài 3 trang 10 Toán lớp 10 Tập 2: Dựa vào đồ thị của các hàm số bậc hai sau đây, hãy lập bảng xét dấu của tam thức bậc hai tương ứng.
Bài 4 trang 10 Toán lớp 10 Tập 2
Bài 4 trang 10 Toán lớp 10 Tập 2: Xét dấu của tam thức bậc hai sau đây:
a) f(x) = 2x2 + 4x + 2;
b) f(x) = - 3x2 + 2x + 21;
c) f(x) = - 2x2 + x – 2;
d) f(x) = -4x(x + 3) – 9;
e) f(x) = (2x + 5)(x – 3).
Bài 5 trang 10 Toán lớp 10 Tập 2
Bài 5 trang 10 Toán lớp 10 Tập 2: Độ cao (tính bằng mét) của một quả bóng so với vành rổ khi bóng di chuyển được x mét theo phương ngang được mô phỏng bằng hàm số h(x) = - 0,1x2 + x – 1. Trong các khoảng nào của x thì bóng nằm: cao hơn vành rổ, thấp hơn vành rổ và ngang vành rổ? Làm tròn kết quả đến hàng phần mười.
Bài 6 trang 10 Toán lớp 10 Tập 2
Bài 6 trang 10 Toán lớp 10 Tập 2: Một khung dây thép hình chữ nhật có chiều dài 20 cm và chiều rộng 15 cm được uốn lại thành khung hình chữ nhật mới có kích thước (20 + x) cm và (15 – x) cm. Với x nằm trong các khoảng nào thì diện tích của khung sau khi uốn: tăng lên, không thay đổi, giảm đi?
Bài 7 trang 10 Toán lớp 10 Tập 2
Bài 7 trang 10 Toán lớp 10 Tập 2: Chứng minh rằng với mọi số thực m ta luôn có 9m2 + 2m > - 3.
Bài 8 trang 10 Toán lớp 10 Tập 2
Bài 8 trang 10 Toán lớp 10 Tập 2: Tìm giá trị của m để:
a) 2x2 + 3x + m + 1 > 0 với mọi x ∈ ℝ;
b) mx2 + 5x – 3 ≤ 0 với mọi x ∈ ℝ.
Hoạt động khởi động trang 6 Toán lớp 10 Tập 2
Hoạt động khởi động trang 6 Toán lớp 10 Tập 2: Cầu vòm được thiết kế với thanh vòm hình parabol và mặt cầu đi ở giữa. Trong hệ trục tọa độ như hình vẽ, phương trình của cầu vòm là y = h(x) = -0,006x2 + 1,2x – 30. Với giá trị h(x) như thế nào thì tại vị trí x (0 ≤ x ≤ 200), vòm cầu: cao hơn mặt cầu, thấp hơn mặt cầu?
Hoạt động khám phá 1 trang 6 Toán lớp 10 Tập 2
Hoạt động khám phá 1 trang 6 Toán lớp 10 Tập 2: Đồ thị của hàm số y = f(x) = - x2 + x + 3 được biểu diễn trong Hình 1.
a) Biểu thức f(x) là đa thức bậc mấy?
b) Xác định dấu của f(2).
Hoạt động khám phá 2 trang 8 Toán lớp 10 Tập 2
Hoạt động khám phá 2 trang 8 Toán lớp 10 Tập 2: Quan sát đồ thị của các hàm số bậc hai trong các hình dưới đây. Trong mỗi trường hợp hãy cho biết:
- Các nghiệm (nếu có) và dấu của biệt thức ∆.
- Các khoảng giá trị của x mà trên đó f(x) cùng dấu với hệ số của x2.
Thực hành 1 trang 7 Toán lớp 10 Tập 2
Thực hành 1 trang 7 Toán lớp 10 Tập 2: Biểu thức nào sau đây là tam thức bậc hai? Nếu là tam thức bậc hai, hãy xét dấu của nó tại x = 1.
a) f(x) = 2x2 + x – 1;
b) g(x) = – x4 + 2x2 + 1;
c)
Thực hành 2 trang 7 Toán lớp 10 Tập 2
Thực hành 2 trang 7 Toán lớp 10 Tập 2: Tìm biệt thức và nghiệm của tam thức bậc hai sau:
a) f(x) = 2x2 – 5x + 2;
b) g(x) = – x2 + 6x – 9;
c) h(x) = 4x2 – 4x + 9.
Thực hành 3 trang 9 Toán lớp 10 Tập 2
Thực hành 3 trang 9 Toán lớp 10 Tập 2: Xét dấu của tam thức bậc hai sau:
a) f(x) = 2x2 – 3x – 2;
b) g(x) = - x2 + 2x – 3.
Vận dụng trang 9 Toán lớp 10 Tập 2
Vận dụng trang 9 Toán lớp 10 Tập 2: Xét dấu tam thức bậc hai h(x) = -0,006x2 + 1,2x – 30 trong bài toán khởi động và cho biết ở khoảng cách nào tính từ đầu cầu O thì vòm cầu: cao hơn mặt cầu, thấp hơn mặt cầu.