Giải bài tập Vận dụng 2 trang 52 Toán 8 Tập 1 | Toán 8 - Chân trời sáng tạo

Hướng dẫn giải chi tiết từng bước bài tập Vận dụng 2 trang 52 Toán 8 Tập 1. Bài 2. Diện tích xung quanh và thể tích của hình chóp tam giác đều, hình chóp tứ giác đều. Toán 8 - Chân trời sáng tạo

Đề bài:

Một bể kính hình hộp chữ nhật có hai cạnh đáy là 60 cm và 30 cm. Trong bể có một khối đá hình chóp tam giác đều với diện tích đáy là 270 , chiều cao 30 cm. Người ta đổ nước vào bể sao cho nước ngập khối đá và đo được mực nước là 60 cm. Khi lấy khối đá ra thì mực nước của bể là bao nhiêu? Biết rằng bề dày của bể và thành bể không đáng kể.

Đáp án và cách giải chi tiết:

Thể tích của bể khi chứa khối đá là:  .

Thể tích của khối đá là:  .

Thể tích bể khi bỏ khối đã ra là: .

Mực nước của bể khi lấy khối đá ra là:

(cm).

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Khám phá 1 trang 49 Toán 8 Tập 1

Nam làm một chiếc hộp hình chóp tứ giác đều như Hình 1a, sau đó Nam trải các mặt của chiếc hộp với các số đo đã cho như Hình 1b. Hãy cho biết:

a) Hình này có bao nhiêu mặt bên.

b) Diện tích của mỗi mặt bên.

c) Diện tích của tất cả mặt các bên.

d) Diện tích đáy của hình này.

Thực hành 1 trang 50 Toán 8 Tập 1

Một tấm bìa (Hình 2) gấp thành hình chóp tam giác đều với các mặt đều là hình tam giác đều. Với số đo trên hình vẽ, hãy tính diện tích xung quanh và diện tích toàn phần của hình này.

Khám phá 2 trang 50 Toán 8 Tập 1

Bạn Hùng có một cái gàu có dạng hình chóp tứ giác đều và một cái thùng (không chứa nước) có dạng hình lăng trụ đứng. Hai vật này có cùng diện tích đáy và chiều cao (Hình 3a).

Hùng múc đầy một gàu nước và đổ vào thùng thì thấy chiều cao của cột nước bằng 13 chiều cao của thùng (Hình 3b). Gọi ­ là diện tích đáy và h là chiều cao của cái gàu.

a) Tính thể tích V của phần nước đổ vào theo  và h.

b) Từ câu a), hãy dự đoán thể tích của cái gàu.

Thực hành 2 trang 52 Toán 8 Tập 1

Tính thể tích của một chiếc hộp bánh ít có dạng hình chóp tứ giác đều, có độ dài cạnh đáy là 3 cm và chiều cao là 2,5 cm.

Thực hành 3 trang 52 Toán 8 Tập 1

Hãy giải bài toán ở phần Hoạt động khởi động (trang 49).

Khởi động trang 49 Toán 8 Tập 1

a) Bạn Mai cần dán giấy bóng kính màu xung quanh một chiếc lồng đèn hình chóp tam giác đều với kích thước như hình bên. Hỏi diện tích giấy mà Mai cần là bao nhiêu?

b) Bạn Hùng dùng một cái gàu hình chóp tứ giác đều để múc nước đổ vào một thùng chứa hình lăng trụ có cùng diện tích đáy và chiều cao như hình bên. Hãy dự đoán xem bạn Hùng phải đổ bao nhiêu gàu thì nước đầy thùng.

Vận dụng 1 trang 52 Toán 8 Tập 1

Một chiếc lều có dạng hình chóp tứ giác đều ở trại hè của học sinh có kích thước như Hình 7.

a) Tính thể tích không khí trong chiếc lều.

b) Tính diện tích vải lều (không tính các mép dán), biết chiều cao của mặt bên xuất phát từ đỉnh của chiếc lều là 3,18 m và lều này không có đáy.

Bài 1 trang 52 Toán 8 Tập 1

a) Tính diện tích xung quanh của mỗi hình chóp tứ giác đều dưới đây.

b) Cho biết chiều cao của hình chóp tứ giác đều trong Hình 9a và Hình 9b lần lượt là 4 cm và 12 cm. Tính thể tích của mỗi hình.

Bài 2 trang 53 Toán 8 Tập 1

Nhân dịp Tết Trung thu, Nam dự định làm một chiếc lồng đèn hình chóp tứ giác đều có độ dài cạnh đáy và đường cao của mặt bên tương ứng với cạnh đáy lần lượt là 30 cm và 40 cm. Em hãy giúp Nam tính xem phải cần bao nhiêu mét vuông giấy vừa đủ để dán tất cả các mặt của chiếc lồng đèn. Biết rằng nếp gấp không đáng kể.

Bài 3 trang 53 Toán 8 Tập 1

a) Tính diện tích xung quanh của hình chóp tam giác đều có độ dài cạnh đáy là 10 cm, chiều cao của mặt bên xuất phát từ đỉnh của hình chóp tam giác đều là 12 cm.

b) Tính diện tích toàn phần và thể tích của hình chóp tứ giác đều có độ dài cạnh đáy là 72 dm, chiều cao là 68,1 dm, chiều cao của mặt bên xuất phát từ đỉnh của hình chóp tứ giác đều là 77 dm.

Bài 4 trang 53 Toán 8 Tập 1

Bảo tàng Louvre (Pháp) có một kim tự tháp hình chóp tứ giác đều bằng kính (gọi là kim tự tháp Louvre) có chiều cao 21,3 m và cạnh đáy 34 m. Tính thể tích của kim tự tháp này.

(Nguồn: https://www.pariscityvision.com/en/paris/museums)

Giải bài tập Toán 8 - Chân trời sáng tạo

Chương 1. Biểu thức đại số

Bài 1. Đơn thức và đa thức nhiều biến

Bài 2. Các phép toán với đa thức nhiều biến

Bài 3. Hằng đẳng thức đáng nhớ

Bài 4. Phân tích đa thức thành nhân tử

Bài 5. Phân thức đại số

Bài 6. Cộng, trừ phân thức

Bài 7. Nhân, chia phân thức

Bài tập cuối chương 1

Chương 2. Các hình khối trong thực tiễn

Bài 1. Hình chóp tam giác đều – Hình chóp tứ giác đều

Bài 2. Diện tích xung quanh và thể tích của hình chóp tam giác đều, hình chóp tứ giác đều

Bài tập cuối chương 2 Các hình khối trong thực tiễn

Chương 3: Định lý Pythagore. Các loại tứ giác thường gặp

Bài 1. Định lí Pythagore

Bài 2. Tứ giác

Bài 3. Hình thang – Hình thang cân

Bài 4. Hình bình hành – Hình thoi

Bài 5. Hình chữ nhật – Hình vuông

Bài tập cuối chương 3 Định lý Pythagore. Các loại tứ giác thường gặp

Chương 4. Một số yếu tố thống kê

Bài 1. Thu thập và phân loại dữ liệu

Bài 2. Lựa chọn dạng biểu đồ để biểu diễn dữ liệu

Bài 3. Phân tích dữ liệu

Bài tập cuối chương 4 Một số yếu tố thống kê

Hoạt động thực hành và trải nghiệm

Hoạt động 1. Dùng vật liệu tái chế gấp hộp quà tặng.

Hoạt động 2. Làm tranh treo tường minh hoạ các loại hình tứ giác đặc biệt.

Hoạt động 3. Thiết lập kế hoạch cho một mục tiêu tiết kiệm.

Chương 5. Hàm số và đồ thị

Bài 1. Khái niệm hàm số

Bài 2. Toạ độ của một điểm và đồ thị của hàm số

Bài 3. Hàm số bậc nhất y = ax + b (a khác 0)

Bài 4. Hệ số góc của đường thẳng

Bài tập cuối chương 5 Hàm số và đồ thị

Chương 6. Phương trình

Bài 1. Phương trình bậc nhất một ẩn.

Bài 2. Giải bài toán bằng cách lập phương trình bậc nhất.

Bài tập cuối chương 6.

Chương 7. Định lý Thalès

Bài 1. Định lí Thalès trong tam giác.

Bài 2. Đường trung bình của tam giác.

Bài 3. Tính chất đường phân giác của tam giác.

Bài tập cuối chương 7.

Chương 8. Hình đồng dạng

Bài 1. Hai tam giác đồng dạng.

Bài 2. Các trường hợp đồng dạng của hai tam giác.

Bài 3. Các trường hợp đồng dạng của hai tam giác vuông.

Bài 4. Hai hình đồng dạng.

Bài tập cuối chương 8.

Chương 9. Một số yếu tố xác suất

Bài 1. Mô tả xác suất bằng tỉ số.

Bài 2. Xác suất lí thuyết và xác suất thực nghiệm.

Bài tập cuối chương 9.

Hoạt động thực hành và trải nghiệm

Hoạt động 4. Vẽ đồ thị hàm số bậc nhất y = ax + b bằng phần mềm GeoGebra.

Hoạt động 5. Dùng phương trình bậc nhất để tính nồng độ phần trăm của dung dịch. Thực hành pha chế dung dịch nước muối sinh lí.

Hoạt động 6. Ứng dụng định lí Thalès để ước lượng tỉ lệ giữa chiều ngang và chiều dọc của một vật.