Giải bài tập Luyện tập 1 trang 67 Toán 10 Tập 2 | Toán 10 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Luyện tập 1 trang 67 Toán 10 Tập 2. Bài 24: Hoán vị, chỉnh hợp và tổ hợp. Toán 10 - Kết nối tri thức

Đề bài:

Trong một cuộc thi điền kinh gồm 6 vận động viên chạy trên 6 đường chạy. Hỏi có bao nhiêu cách sắp xếp các vận động viên vào các đường chạy đó?

Đáp án và cách giải chi tiết:

Mỗi cách sắp xếp 6 vận động viên vào 6 đường chạy là một hoán vị của 6 phần tử.

Vậy số cách sắp xếp các vận động viên vào các đường chạy đó là: P6 = 6! = 720 (cách).

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Bài 8.6 trang 70 Toán 10 Tập 2

Bài 8.6 trang 70 Toán 10 Tập 2: Một hoạ sĩ cần trưng bày 10 bức tranh nghệ thuật khác nhau thành một hàng ngang. Hỏi có bao nhiêu cách để hoạ sĩ sắp xếp các bức tranh?

Bài 8.7 trang 70 Toán 10 Tập 2

Bài 8.7 trang 70 Toán 10 Tập 2: Từ các chữ số 0, 1, 2, 3, 4 có thể lập được bao nhiêu số tự nhiên có ba chữ số khác nhau?

Bài 8.8 trang 70 Toán 10 Tập 2

Bài 8.8 trang 70 Toán 10 Tập 2: Có bao nhiêu cách chọn một tập hợp gồm hai số nguyên dương nhỏ hơn 100? Có bao nhiêu cách chọn một tập hợp gồm ba số nguyên dương nhỏ hơn 100?

Bài 8.9 trang 70 Toán 10 Tập 2

Bài 8.9 trang 70 Toán 10 Tập 2: Bạn Hà có 5 viên bi xanh và 7 viên bi đỏ. Có bao nhiêu cách để Hà chọn ra đúng 2 viên bi khác màu?

Bài 8.10 trang 71 Toán 10 Tập 2

Bài 8.10 trang 71 Toán 10 Tập 2: Một câu lạc bộ cờ vua có 10 bạn nam và 7 bạn nữ. Huấn luyện viên muốn chọn 4 bạn đi thi đấu cờ vua.

a) Có bao nhiêu cách chọn 4 bạn nam?

b) Có bao nhiêu cách chọn 4 bạn không phân biệt nam, nữ?

c) Có bao nhiêu cách chọn 4 bạn, trong đó có 2 bạn nam và 2 bạn nữ?

Bài 8.11 trang 71 Toán 10 Tập 2

Bài 8.11 trang 71 Toán 10 Tập 2: Có bao nhiêu số tự nhiên chia hết cho 5 mà mỗi số có bốn chữ số khác nhau?

Mở đầu trang 66 Toán 10 Tập 2

Danh sách các cầu thủ của Đội tuyển bóng đá quốc gia tham dự một trận đấu quốc tế có 23 cầu thủ gồm 3 thủ môn, 7 hậu vệ, 8 tiền vệ và 5 tiền đạo. Huấn luyện viên rất bí mật, không cho ai biết đội hình (danh sách 11 cầu thủ) sẽ ra sân. Trong cuộc họp báo, ông chỉ tiết lộ đội sẽ đá theo sơ đồ 3 – 4 – 3 (nghĩa là 3 hậu vệ, 4 tiền vệ, 3 tiền đạo và 1 thủ môn). Đối thủ đã có danh sách 23 cầu thủ (tên và vị trí của từng cầu thủ) và rất muốn dự đoán đội hình, họ xét hết các khả năng có thể xảy ra. Hỏi nếu đối thủ đã dự đoán trước vị trí thủ môn thì họ sẽ phải xét bao nhiêu đội hình có thể?

HĐ1 trang 67 Toán 10 Tập 2

Một nhóm gồm bốn bạn Hà, Mai, Nam, Đạt xếp thành một hàng, từ trái sang phải, để tham gia một cuộc phỏng vấn.

a) Hãy liệt kê ba cách sắp xếp bốn bạn trên theo thứ tự.

b) Có bao nhiêu cách sắp xếp thứ tự bốn bạn trên để tham gia phỏng vấn?

HĐ2 trang 67 Toán 10 Tập 2

Trong lớp 10T có bốn bạn Tuấn, Hương, Việt, Dung tham gia cuộc thi hùng biện của trường. Hỏi có bao nhiêu cách chọn:

a) Hai bạn phụ trách nhóm từ bốn bạn?

b) Hai bạn phụ trách nhóm, trong đó một bạn làm nhóm trưởng, một bạn làm nhóm phó?

Luyện tập 2 trang 68 Toán 10 Tập 2

Trong một giải đua ngựa gồm 12 con ngựa, người ta chỉ quan tâm đến 3 con ngựa: con nhanh nhất, nhanh nhì và nhanh thứ ba. Hỏi có bao nhiêu kết quả có thể xảy ra?

HĐ3 trang 68 Toán 10 Tập 2

Trở lại HĐ2.

a) Hãy cho biết sự khác biệt khi chọn ra hai bạn ở câu HĐ2a và HĐ2b.

b) Từ kết quả tính được ở câu HĐ2b (áp dụng chỉnh hợp), hãy chỉ ra cách tính kết quả ở câu HĐ2a.

Luyện tập 3 trang 69 Toán 10 Tập 2

Trong ngân hàng đề kiểm tra cuối học kì II môn Vật lí có 20 câu lí thuyết và 40 câu bài tập. Người ta chọn ra 2 câu lí thuyết và 3 câu bài tập trong ngân hàng đề để tạo thành một đề thi. Hỏi có bao nhiêu cách lập đề thi gồm 5 câu hỏi theo cách chọn như trên?

Vận dụng trang 70 Toán 10 Tập 2

Một câu lạc bộ có 20 học sinh.

a) Có bao nhiêu cách chọn 6 thành viên vào Ban quản lí?

b) Có bao nhiêu cách chọn Trưởng ban, 1 Phó ban, 4 thành viên khác vào Ban quản lí?

Giải bài tập Toán 10 - Kết nối tri thức

Chương 1: Mệnh đề và tập hợp

Bài 1: Mệnh đề

Bài 2: Tập hợp và các phép toán trên tập hợp

Bài tập cuối chương 1

Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Bài 3: Bất phương trình bậc nhất hai ẩn

Bài 4: Hệ bất phương trình bậc nhất hai ẩn

Bài tập cuối chương 2

Chương 3: Hệ thức lượng trong tam giác

Bài 5: Giá trị lượng giác của một góc từ 0° đến 180°

Bài 6: Hệ thức lượng trong tam giác

Bài tập cuối chương 3

Chương 4: Vectơ

Bài 7: Các khái niệm mở đầu

Bài 8: Tổng và hiệu của hai vectơ

Bài 9: Tích của một vectơ với một số

Bài 10: Vectơ trong mặt phẳng tọa độ

Bài 11: Tích vô hướng của hai vectơ

Bài tập cuối chương 4

Chương 5: Các số đặc trưng của mẫu số liệu không ghép nhóm

Bài 12: Số gần đúng và sai số

Bài 13: Các số đặc trưng đo xu thế trung tâm

Bài 14: Các số đặc trưng đo độ phân tán

Bài tập cuối chương 5

Hoạt động thực hành trải nghiệm - Tập 1

Tìm hiểu một số kiến thức về tài chính

Mạng xã hội: Lợi và hại

Chương 6: Hàm số, đồ thị và ứng dụng

Bài 15: Hàm số

Bài 16: Hàm số bậc hai

Bài 17: Dấu của tam thức bậc hai

Bài 18: Phương trình quy về phương trình bậc hai

Bài tập cuối chương 6

Chương 7: Phương pháp tọa độ trong mặt phẳng

Bài 19: Phương trình đường thẳng

Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

Bài 21: Đường tròn trong mặt phẳng tọa độ

Bài 22: Ba đường conic

Bài tập cuối chương 7

Chương 8: Đại số tổ hợp

Bài 23: Quy tắc đếm

Bài 24: Hoán vị, chỉnh hợp và tổ hợp

Bài 25: Nhị thức Newton

Bài tập cuối chương 8

Chương 9: Tính xác suất theo định nghĩa cổ điển

Bài 26: Biến cố và định nghĩa cổ điển của xác suất

Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển

Bài tập cuối chương 9

Hoạt động thực hành trải nghiệm - Tập 2

Một số nội dung cho hoạt động trải nghiệm hình học

Ước tính số cá thể trong một quần thể