Giải bài tập Khởi động trang 52 Toán 8 Tập 2 | Toán 8 - Chân trời sáng tạo

Hướng dẫn giải chi tiết từng bước bài tập Khởi động trang 52 Toán 8 Tập 2. Bài 2. Đường trung bình của tam giác.. Toán 8 - Chân trời sáng tạo

Đề bài:

Giữa hai điểm B và C có một hồ nước (xem hình bên). Biết DE = 45 m. Làm thế nào để tính được khoảng cách giữa hai điểm B và C?

Đáp án và cách giải chi tiết:

Xét tam giác ABC, ta có: 

Theo định lí Thalès đảo, ta có DE // BC.

Suy ra , vậy BC = 2DE = 90 m.

Sau khi học xong bài này:

Ta có: D, E là trung điểm của AB và AC nên DE là đường trung bình của tam giác ABC

Suy ra , vậy BC = 2DE = 90 m.

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Khám phá 1 trang 52 Toán 8 Tập 2

Cho tam giác ABC, vẽ đường thẳng d đi qua trung điểm M của cạnh AB, song song với cạnh BC và cắt AC tại N (Hình 1). Hãy chứng minh N là trung điểm của AC.

Thực hành 1 trang 52 Toán 8 Tập 2

Tìm độ dài đoạn thẳng NQ trong Hình 4.

Vận dụng 1 trang 53 Toán 8 Tập 2

Trong Hình 5, chứng minh MN là đường trung bình của tam giác ABC.

Khám phá 2 trang 53 Toán 8 Tập 2

Cho M, N lần lượt là trung điểm của hai cạnh AB và AC của tam giác ABC.

a) Tính các tỉ số ;

b) Chứng minh MN // BC;

c) Chứng minh .

Thực hành 2 trang 53 Toán 8 Tập 2

Trong Hình 8, cho biết JK = 10 cm, DE = 6,5 cm, EL = 3,7 cm. Tính DJ, EF, DF, KL.

Vận dụng 2 trang 53 Toán 8 Tập 2

Hãy tính khoảng cách BC trong phần Hoạt động khởi động (trang 52).

Bài 1 trang 53 Toán 8 Tập 2

Cho MN là đường trung bình của mỗi tam giác ABC trong Hình 9. Hãy tìm giá trị x trong mỗi hình.

Bài 3 trang 54 Toán 8 Tập 2

Cho biết cạnh mỗi ô vuông bằng 1 cm. Tính độ dài các đoạn PQ, PR, RQ, AB, BC, CA trong Hình 11.

Bài 4 trang 54 Toán 8 Tập 2

Cho hình thang ABCD (AB // CD) có E và F lần lượt là trung điểm hai cạnh bên AD và BC. Gọi K là giao điểm của AF và DC (Hình 12).

a) Tam giác FBA và tam giác FCK có bằng nhau không? Vì sao?

b) Chứng minh EF // CD // AB.

c) Chứng minh .

Bài 5 trang 54 Toán 8 Tập 2

Cho tam giác ABC nhọn. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC. Kẻ đường cao AH. Chứng minh rằng tứ giác MNPH là hình thang cân.

Bài 6 trang 54 Toán 8 Tập 2

Một mái nhà được vẽ lại như Hình 13. Tính độ dài x trong hình mái nhà.

Bài 7 trang 54 Toán 8 Tập 2

Ảnh chụp từ Google Maps của một trường học được cho trong Hình 14. Hãy tính chiều dài cạnh DE, cho biết BC = 232 m và B, C lần lượt là trung điểm AD và AE.

Giải bài tập Toán 8 - Chân trời sáng tạo

Chương 1. Biểu thức đại số

Bài 1. Đơn thức và đa thức nhiều biến

Bài 2. Các phép toán với đa thức nhiều biến

Bài 3. Hằng đẳng thức đáng nhớ

Bài 4. Phân tích đa thức thành nhân tử

Bài 5. Phân thức đại số

Bài 6. Cộng, trừ phân thức

Bài 7. Nhân, chia phân thức

Bài tập cuối chương 1

Chương 2. Các hình khối trong thực tiễn

Bài 1. Hình chóp tam giác đều – Hình chóp tứ giác đều

Bài 2. Diện tích xung quanh và thể tích của hình chóp tam giác đều, hình chóp tứ giác đều

Bài tập cuối chương 2 Các hình khối trong thực tiễn

Chương 3: Định lý Pythagore. Các loại tứ giác thường gặp

Bài 1. Định lí Pythagore

Bài 2. Tứ giác

Bài 3. Hình thang – Hình thang cân

Bài 4. Hình bình hành – Hình thoi

Bài 5. Hình chữ nhật – Hình vuông

Bài tập cuối chương 3 Định lý Pythagore. Các loại tứ giác thường gặp

Chương 4. Một số yếu tố thống kê

Bài 1. Thu thập và phân loại dữ liệu

Bài 2. Lựa chọn dạng biểu đồ để biểu diễn dữ liệu

Bài 3. Phân tích dữ liệu

Bài tập cuối chương 4 Một số yếu tố thống kê

Hoạt động thực hành và trải nghiệm

Hoạt động 1. Dùng vật liệu tái chế gấp hộp quà tặng.

Hoạt động 2. Làm tranh treo tường minh hoạ các loại hình tứ giác đặc biệt.

Hoạt động 3. Thiết lập kế hoạch cho một mục tiêu tiết kiệm.

Chương 5. Hàm số và đồ thị

Bài 1. Khái niệm hàm số

Bài 2. Toạ độ của một điểm và đồ thị của hàm số

Bài 3. Hàm số bậc nhất y = ax + b (a khác 0)

Bài 4. Hệ số góc của đường thẳng

Bài tập cuối chương 5 Hàm số và đồ thị

Chương 6. Phương trình

Bài 1. Phương trình bậc nhất một ẩn.

Bài 2. Giải bài toán bằng cách lập phương trình bậc nhất.

Bài tập cuối chương 6.

Chương 7. Định lý Thalès

Bài 1. Định lí Thalès trong tam giác.

Bài 2. Đường trung bình của tam giác.

Bài 3. Tính chất đường phân giác của tam giác.

Bài tập cuối chương 7.

Chương 8. Hình đồng dạng

Bài 1. Hai tam giác đồng dạng.

Bài 2. Các trường hợp đồng dạng của hai tam giác.

Bài 3. Các trường hợp đồng dạng của hai tam giác vuông.

Bài 4. Hai hình đồng dạng.

Bài tập cuối chương 8.

Chương 9. Một số yếu tố xác suất

Bài 1. Mô tả xác suất bằng tỉ số.

Bài 2. Xác suất lí thuyết và xác suất thực nghiệm.

Bài tập cuối chương 9.

Hoạt động thực hành và trải nghiệm

Hoạt động 4. Vẽ đồ thị hàm số bậc nhất y = ax + b bằng phần mềm GeoGebra.

Hoạt động 5. Dùng phương trình bậc nhất để tính nồng độ phần trăm của dung dịch. Thực hành pha chế dung dịch nước muối sinh lí.

Hoạt động 6. Ứng dụng định lí Thalès để ước lượng tỉ lệ giữa chiều ngang và chiều dọc của một vật.