Giải bài tập HĐ2 trang 77 Toán 8 Tập 1 | Toán 8 - Kết nối tri thức
Hướng dẫn giải chi tiết từng bước bài tập HĐ2 trang 77 Toán 8 Tập 1. Bài 15. Định lí Thalès trong tam giác. Toán 8 - Kết nối tri thức
Đề bài:
Cho Hình 4.2, em hãy thực hiện các hoạt động sau:
Dùng thước thẳng, đo độ dài hai đoạn thẳng AB và CD (đơn vị: cm) rồi dùng kết quả vừa đo để tính tỉ số .
Đáp án và cách giải chi tiết:
Đo độ dài các đoạn thẳng, ta được: AB = 3 cm; CD = 9 cm.
Khi đó .
Nguồn: loigiaitoan.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Bài tập liên quan:
Mở đầu trang 76 Toán 8 Tập 1
Cây cầu AB bắc qua một con sông có chiều rộng 300 m. Để đo khoảng cách giữa hai điểm C và D trên hai bờ con sông, người ta chọn một điểm E trên đường thẳng AB sao cho ba điểm E, C, D thẳng hàng. Trên mặt đất, người ta đo được AE = 400 m, EC = 500 m. Theo em, người ta tính khoảng cách giữa C và D như thế nào?
HĐ1 trang 77 Toán 8 Tập 1
Cho Hình 4.2, em hãy thực hiện các hoạt động sau:
Hãy tìm độ dài của hai đoạn thẳng AB và CD nếu chọn đoạn MN làm đơn vị độ dài. Với các độ dài đó hãy tính tỉ số .
HĐ3 trang 77 Toán 8 Tập 1
So sánh hai tỉ số tìm được trong hai hoạt động trên.
Luyện tập 1 trang 77 Toán 8 Tập 1
Tìm tỉ số của các đoạn thẳng có độ dài như sau:
a) MN = 3 cm và PQ = 9 cm.
b) EF = 25 cm và HK = 10 dm.
Luyện tập 2 trang 78 Toán 8 Tập 1
Cho tam giác ABC và một điểm B’ nằm trên cạnh AB. Qua điểm B’, ta vẽ một đường thẳng song song với BC, cắt AC tại C’ (H.4.4).
Dựa vào hình vẽ, hãy tính và so sánh các tỉ số sau và viết các tỉ lệ thức:
a)
b)
c)
HĐ4 trang 79 Toán 8 Tập 1
Cho ∆ABC có AB = 6 cm, AC = 9 cm. Trên cạnh AB lấy điểm B’, trên cạnh AC lấy điểm C’ sao cho AB’ = 4 cm, AC’ = 6 cm (H.4.7).
• So sánh các tỉ số và .
• Vẽ đường thẳng a đi qua B’ và song song với BC, đường thẳng qua a cắt AC tại điểm C’’. Tính độ dài đoạn thẳng AC’’.
• Nhận xét gì về hai điểm C’, C’’ và hai đường thẳng B’C’, BC?
Vận dụng trang 80 Toán 8 Tập 1
Em hãy trả lời câu hỏi trong tình huống mở đầu.
Cây cầu AB bắc qua một con sông có chiều rộng 300 m. Để đo khoảng cách giữa hai điểm C và D trên hai bờ con sông, người ta chọn một điểm E trên đường thẳng AB sao cho ba điểm E, C, D thẳng hàng. Trên mặt đất, người ta đo được AE = 400 m, EC = 500 m. Theo em, người ta tính khoảng cách giữa C và D như thế nào?
Bài 4.1 trang 80 Toán 8 Tập 1
Tìm độ dài x, y trong Hình 4.9 (làm tròn kết quả đến chữ số thập phân thứ nhất).
Bài 4.2 trang 80 Toán 8 Tập 1
Tìm các cặp đường thẳng song song trong Hình 4.10 và giải thích tại sao chúng song song với nhau.
Bài 4.3 trang 80 Toán 8 Tập 1
Cho ∆ABC, từ điểm D trên cạnh BC, kẻ đường thẳng song song với AB cắt AC tại F và kẻ đường thẳng song song với AC cắt AB tại E.
Chứng minh rằng: .
Bài 4.4 trang 80 Toán 8 Tập 1
Cho ∆ABC có trọng tâm G. Vẽ đường thẳng d qua G và song song với AB, d cắt BC tại điểm M. Chứng minh rằng BM = BC.
Bài 4.5 trang 80 Toán 8 Tập 1
Để đo khoảng cách giữa hai vị trí B và E ở hai bên bờ sông, bác An chọn ba vị trí A, F, C cùng nằm ở một bên bờ sông sao cho ba điểm C, E, B thẳng hàng, ba điểm C, F, A thẳng hàng và AB // EF (H.4.11). Sau đó bác An đo được AF = 40 m, FC = 20 m, EC = 30 m. Hỏi khoảng cách giữa hai vị trí B và E bằng bao nhiêu?