Giải bài tập Câu hỏi khởi động trang 3 Toán 12 Tập 2 | SGK Toán 12 - Cánh diều

Hướng dẫn giải chi tiết từng bước bài tập Câu hỏi khởi động trang 3 Toán 12 Tập 2. Bài 1. Nguyên hàm.. SGK Toán 12 - Cánh diều

Đề bài:

Một hòn đá rơi từ mỏm đá có độ cao 150 m so với mặt đất theo phương thẳng đứng. Biết tốc độ rơi của hòn đá (tính theo đơn vị m/s) tại thời điểm t (tính theo giây) được cho bởi công thức v(t) = 9,8t.

Quãng đường rơi được S của hòn đá tại thời điểm t được cho bởi công thức nào? Sau bao nhiêu giây thì hòn đá chạm đến mặt đất?

Đáp án và cách giải chi tiết:

Sau bài học này, ta giải quyết được bài toán trên như sau:

Gọi S = S(t) là quãng đường rơi được của hòn đá tại thời điểm t (S(t) tính theo m, t tính theo giây).

Suy ra S'(t) = v(t), do đó S(t) là một nguyên hàm của v(t).

Ta có = 4,9t2 + C. Suy ra S(t) = 4,9t2 + C.

Mà hòn đá rơi từ mỏm đá có độ cao 150 m so với mặt đất theo phương thẳng đứng tức là tại thời điểm t = 0 thì S = 0 hay S(0) = 0, suy ra C = 0.

Vậy công thức tính quãng đường rơi được S(t) của hòn đá tại thời điểm t là:

S(t) = 4,9t2.

Khi hòn đá chạm đất thì S(t) = 150. Ta có 4,9t2 = 150. Suy ra t = .

Mà t > 0 nên t = .

Vậy sau t = ≈ 5,53 giây thì hòn đá chạm đến mặt đất.

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Bài 1 trang 7 Toán 12 Tập 2

Bài 1 trang 7 Toán 12 Tập 2: Hàm số F(x)=x3+5 là nguyên hàm của hàm số:

A. f(x)=3x2.

B. f(x)=x44+5x+C.

C. f(x)=x44+5x

D. f(x)=3x2+5x

Bài 2 trang 7 Toán 12 Tập 2

Bài 2 trang 7 Toán 12 Tập 2: Tìm nguyên hàm của các hàm số sau:

a) f(x)=3x2+x;

b) f(x)=9x2-2x+7;

c) f(x)=(4x-3)(x2+3).

Bài 3 trang 7 Toán 12 Tập 2

Bài 3 trang 7 Toán 12 Tập 2: Tìm nguyên hàm F(x) của hàm số f(x)=6x5+2x-3, biết F(-1)=-5.

Bài 4 trang 8 Toán 12 Tập 2

Bài 4 trang 8 Toán 12 Tập 2: Một vườn ươm cây cảnh bán một cây sau 6 năm trồng và uốn tạo dáng. Tốc độ tăng trưởng trong suốt 6 năm được tính xấp xỉ bởi công thức h'(t)=1,5t+5, trong đó h(t) (cm) là chiều cao của cây sau t (năm) (Nguồn: R. Larson and B. Edwards, Calculus 10e Cengage 2014). Biết rằng, cây con khi được trồng cao 12 cm.

a) Viết công thức tính chiều cao của cây sau t năm.

b) Khi được bán, cây cao bao nhiêu centimét?

Bài 5 trang 8 Toán 12 Tập 2

Bài 5 trang 8 Toán 12 Tập 2: Tại một lễ hội dân gian, tốc độ thay đổi lượng khách tham dự được biểu diễn bằng hàm số  B'(t)=20t3-300t2+1000t, trong đó t tính bằng giờ (0 ≤ t ≤ 15), B'(t) tính bằng khách/giờ.

(Nguồn: A. Bigalke et al., Mathematik, Grundkurs ma-1, Cornelsen 2016)

Biết rằng sau một giờ, 500 người đã có mặt tại lễ hội.

a) Viết công thức của hàm số B(t) biểu diễn số lượng khách tham dự lễ hội với 0 ≤ t ≤ 15.

b) Sau 3 giờ sẽ có bao nhiêu khách tham dự lễ hội?

c) Số lượng khách tham dự lễ hội lớn nhất là bao nhiêu?

d) Tại thời điểm nào thì tốc độ thay đổi lượng khách tham dự lễ hội là lớn nhất?

Bài 6 trang 8 Toán 12 Tập 2

Bài 6 trang 8 Toán 12 Tập 2: Đối với các dự án xây dựng, chi phí nhân công lao động được tính theo số ngày công. Gọi m(t) là số lượng công nhân được sử dụng ở ngày thứ t (kể từ khi khởi công dự án). Gọi M(t) là số ngày công được tính đến hết ngày thứ t (kể từ khi khởi công dự án). Trong kinh tế xây dựng, người ta đã biết rằng M'(t)=m(t).

Một công trình xây dựng dự kiến hoàn thành trong 400 ngày. Số lượng công nhân được sử dụng cho bởi hàm số m(t)=800-2t, trong đó t tính theo ngày (0 ≤ t ≤ 400), m(t) tính theo người.

(Nguồn: A. Bigalke et al., Mathematik, Grundkurs ma-1, Cornelsen 2016)

Đơn giá cho một ngày công lao động là 400 000 đồng.

Tính chi phí nhân công lao động của công trình đó (cho đến lúc hoàn thành).

Hoạt động 1 trang 3 Toán 12 Tập 2

Cho hàm số F(x) = x3, x ∈ (– ∞; + ∞). Tính F'(x).

Luyện tập 1 trang 4 Toán 12 Tập 2

Hàm số F(x) = cot x là nguyên hàm của hàm số nào? Vì sao?

Hoạt động 2 trang 4 Toán 12 Tập 2

Cho hàm số F(x) = x3 – 1, x ∈ ℝ và G(x) = x3 + 5, x ∈ ℝ.

a) Cả hai hàm số F(x) và G(x) có phải là nguyên hàm của hàm số f(x) = 3x2 trên ℝ hay không?

b) Hiệu F(x) – G(x) có phải là một hằng số C (không phụ thuộc vào x) hay không?

Luyện tập 2 trang 4 Toán 12 Tập 2

Tìm tất cả các nguyên hàm của hàm số f(x) = cos x trên ℝ.

Luyện tập 4 trang 6 Toán 12 Tập 2

Chứng tỏ rằng  với n là số nguyên dương.

Hoạt động 3 trang 5 Toán 12 Tập 2

Cho f(x) là hàm số liên tục trên K, k là hằng số thực khác 0.

a) Giả sử F(x) là một nguyên hàm của hàm số f(x) trên K. Hỏi kF(x) có phải là nguyên hàm của hàm số kf(x) trên K hay không?

b) Giả sử G(x) là một nguyên hàm của hàm số kf(x) trên K. Đặt G(x) = kH(x) trên K. Hỏi H(x) có phải là nguyên hàm của hàm số f(x) trên K hay không?

c) Nêu nhận xét về  và .

Hoạt động 4 trang 6 Toán 12 Tập 2

Cho f(x), g(x) là hai hàm số liên tục trên K.

a) Giả sử F(x), G(x) lần lượt là nguyên hàm của các hàm số f(x), g(x) trên K. Hỏi F(x) + G(x) có phải là nguyên hàm của hàm số f(x) + g(x) trên K hay không?

b) Giả sử H(x), F(x) lần lượt là nguyên hàm của các hàm số f(x) + g(x), f(x) trên K. Đặt G(x) = H(x) – F(x) trên K. Hỏi G(x) có phải là nguyên hàm của hàm số g(x) trên K hay không?

c) Nêu nhận xét về  và .

Giải bài tập SGK Toán 12 - Cánh diều

Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

Bài 1. Tính đơn điệu của hàm số.

Bài 2. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số.

Bài 3. Đường tiệm cận của đồ thị hàm số.

Bài 4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số.

Bài tập cuối chương 1

Chương 2. Tọa độ của vectơ trong không gian

Bài 1. Vectơ và các phép toán vectơ trong không gian.

Bài 2. Toạ độ của vectơ.

Bài 3. Biểu thức toạ độ của các phép toán vectơ.

Bài tập cuối chương 2

Chương 3. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm

Bài 1. Khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm.

Bài 2. Phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm.

Bài tập cuối chương 3

Chương 4. Nguyên hàm. Tích phân

Bài 1. Nguyên hàm.

Bài 2. Nguyên hàm của một số hàm số sơ cấp.

Bài 3. Tích phân.

Bài 4. Ứng dụng hình học của tích phân.

Bài tập cuối chương 4

Chương 5. Phương trình mặt phẳng, đường thẳng, mặt cầu trong không gian

Bài 1. Phương trình mặt phẳng

Bài 2. Phương trình đường thẳng.

Bài 3. Phương trình mặt cầu.

Bài tập cuối chương 5

Chương 6. Một số yếu tố xác suất

Bài 1. Xác suất có điều kiện.

Bài 2. Công thức xác suất toàn phần. Công thức Bayes.

Bài tập cuối chương 6