Giải bài tập Bài 3.38 trang 73 Toán 8 Tập 1 | Toán 8 - Kết nối tri thức
Hướng dẫn giải chi tiết từng bước bài tập Bài 3.38 trang 73 Toán 8 Tập 1. Luyện tập chung chương 3 trang 73. Toán 8 - Kết nối tri thức
Đề bài:
Cho hình vuông ABCD. Lấy một điểm E trên cạnh CD. Tia phân giác của góc DAE cắt cạnh DC tại M. Đường thẳng qua M vuông góc với AE cắt BC tại N. Chứng minh DM + BN = MN.
Đáp án và cách giải chi tiết:
Vì ABCD là hình vuông nên .
Đường thẳng qua M vuông góc với AE cắt BC tại N nên .
Do đó .
Xét ∆ADM và ∆APM có:
(chứng minh trên)
Cạnh AM chung
(vì AM là tia phân giác của ).
Do đó ∆ADM = ∆APM (cạnh huyền – góc nhọn).
Suy ra MD = MP và AD = AP (các cặp cạnh tương ứng).
Ta có: AB = AD và AD = AP nên AB = AP.
Xét ∆ABN và ∆APNcó:
;
AN là cạnh chung;
AB = AP (chứng minh trên)
Do đó ∆ABN = ∆APN (cạnh huyền – cạnh góc vuông).
Suy ra BN = PN (hai cạnh tương ứng).
Khi đó MN = MP + PN = MD + BN.
Vậy DM + BN = MN.
Nguồn: loigiaitoan.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Bài tập liên quan:
Bài 3.34 trang 73 Toán 8 Tập 1
Cho tam giác ABC; M và N lần lượt là trung điểm của hai cạnh AB và AC. Lấy điểm P sao cho N là trung điểm của đoạn thẳng MP.
a) Hỏi tứ giác AMCP là hình gì? Vì sao?
b) Với điều kiện nào của tam giác ABC thì tứ giác AMCP là hình chữ nhật; hình thoi; hình vuông?
Bài 3.35 trang 73 Toán 8 Tập 1
Cho hình bình hành ABCD. Các tia phân giác của góc A, B, C, D cắt nhau như trên Hình 3.58. Chứng minh rằng EFGH là hình chữ nhật.
Bài 3.36 trang 73 Toán 8 Tập 1
Một khung tre hình chữ nhật có lắp đinh vít tại bốn đỉnh. Khi khung tre này bị xô lệch (do các đinh vít bị lỏng), các góc không còn vuông nữa thì khung đó là hình gì? Tại sao? Hỏi khi nẹp thêm một đường chéo vào khung đó thì nó còn bị xô lệch không?
Bài 3.37 trang 73 Toán 8 Tập 1
Gọi Ou và Ov lần lượt là hai tia phân giác của hai góc kề bù xOy và x’Oy; A là một điểm khác O trên tia Ox. Gọi B và C là chân đường vuông góc hạ từ A lần lượt xuống đường thẳng chứa Ou và Ov. Hỏi tứ giác OBAC là hình gì? Vì sao?