Giải bài tập Toán 12 Bài tập cuối chương 5 | Chân trời sáng tạo

Hướng dẫn giải chi tiết Bài tập cuối chương 5

Bài 1 trang 66 Toán 12 Tập 2

Bài 1 trang 66 Toán 12 Tập 2: Cho mặt phẳng . Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?

A. .
B. .
C. .
D. .
Xem cách giải chi tiết

Bài 2 trang 66 Toán 12 Tập 2

Bài 2 trang 66 Toán 12 Tập 2: Phương trình nào dưới đây là phương trình mặt phẳng (Oyz)?

A. y = 0.

B. x = 0.

C. y – z = 0.

D. z = 0.

Xem cách giải chi tiết

Bài 3 trang 66 Toán 12 Tập 2

Bài 3 trang 66 Toán 12 Tập 2: Phương trình nào dưới đây là phương trình mặt phẳng đi qua điểm M(1; 2; −3) và có vectơ pháp tuyến

A. .

B. .

C. .

D. .

Xem cách giải chi tiết

Bài 4 trang 66 Toán 12 Tập 2

Bài 4 trang 66 Toán 12 Tập 2: Cho mặt phẳng (P): 3x + 4y + 2z + 4 = 0 và điểm A(1; −2; 3). Khoảng cách từ A đến (P) bằng

A. .

B.

C. .

D. .

Xem cách giải chi tiết

Bài 5 trang 66 Toán 12 Tập 2

Bài 5 trang 66 Toán 12 Tập 2: Cho ba mặt phẳng , . Trong các mệnh đề sau, mệnh đề nào sai?

A.
B.
C.
D.
Xem cách giải chi tiết

Bài 6 trang 66 Toán 12 Tập 2

Bài 6 trang 66 Toán 12 Tập 2: Cho đường thẳng d: . Vectơ nào dưới đây là một vectơ chỉ phương của d?

A. .

B. .

C. .

D. .

Xem cách giải chi tiết

Bài 7 trang 66 Toán 12 Tập 2

Bài 7 trang 66 Toán 12 Tập 2: Phương trình nào dưới đây là phương trình chính tắc của đường thẳng 

A. .

B. .

C. .

D. .

Xem cách giải chi tiết

Bài 8 trang 66 Toán 12 Tập 2

Bài 8 trang 66 Toán 12 Tập 2: Cho đường thẳng . Trong các đường thẳng sau, đường thẳng nào vuông góc với d?

A. 

B.

C. .

D.

Xem cách giải chi tiết

Bài 9 trang 66 Toán 12 Tập 2

Bài 9 trang 66 Toán 12 Tập 2: Cho hai mặt phẳng . Góc giữa hai mặt phẳng (P) và (Q) bằng

A. .

B. .

C. .

D. .

Xem cách giải chi tiết

Bài 10 trang 67 Toán 12 Tập 2

Bài 10 trang 67 Toán 12 Tập 2: Cho mặt cầu . Tọa độ tâm I và bán kính R của (S) là

A. I(−1; 2; 1) và R = 3.

B. I(1; −2; −1) và R = 3.

C. I(−1; 2; 1) và R = 9.

D. I(1; −2; −1) và R = 9.

Xem cách giải chi tiết

Bài 11 trang 67 Toán 12 Tập 2

Bài 11 trang 67 Toán 12 Tập 2: Mặt cầu tâm I(−3; 0; 4) và đi qua điểm A(−3; 0; 0) có phương trình là

A. .

B. .

C. .

D. .

Xem cách giải chi tiết

Bài 12 trang 67 Toán 12 Tập 2

Bài 12 trang 67 Toán 12 Tập 2: Cho bốn điểm A(1; 0; 0), B(0; 1; 0), C(0; 0; 1), D(−2; 1; −1).

a) Chứng minh A, B, C, D là bốn đỉnh của một hình chóp.

b) Tìm góc giữa hai đường thẳng AB và CD.

c) Tính độ dài đường cao của hình chóp A.BCD.

Xem cách giải chi tiết

Bài 13 trang 67 Toán 12 Tập 2

Bài 13 trang 67 Toán 12 Tập 2: Cho bốn điểm A(−2; 6; 3), B(1; 0; 6), C(0; 2; −1), D(1; 4; 0).

a) Viết phương trình mặt phẳng (BCD). Suy ra ABCD là một tứ diện.

b) Tính chiều cao AH của tứ diện ABCD.

c) Viết phương trình mặt phẳng (α) chứa AB và song song với CD.

Xem cách giải chi tiết

Bài 14 trang 67 Toán 12 Tập 2

Bài 14 trang 67 Toán 12 Tập 2: Phần mềm điều khiển máy in 3D cho biết đầu in phun của máy đang đặt tại điểm M(3; 4; 24) (đơn vị: cm). Tính khoảng cách từ đầu in đến khay đặt vật in có phương trình .

Xem cách giải chi tiết

Bài 15 trang 67 Toán 12 Tập 2

Bài 15 trang 67 Toán 12 Tập 2: Cho hai mặt phẳng (P): x – y – 6 = 0 và (Q). Biết rằng điểm H(2; −1; −2) là hình chiếu vuông góc của gốc tọa độ O(0; 0; 0) xuống mặt phẳng (Q). Tính góc giữa mặt phẳng (P) và mặt phẳng (Q).

Xem cách giải chi tiết

Bài 16 trang 67 Toán 12 Tập 2

Bài 16 trang 67 Toán 12 Tập 2: Phần mềm của máy tiện kĩ thuật số CNC (Computer Numerical Control) đang biểu diễn một chi tiết máy như Hình 2.

a) Tìm tọa độ các điểm A, B, C, D.

b) Viết phương trình mặt phẳng (ABC) và mặt phẳng (ACD).

c) Viết phương trình tham số của đường thẳng AC.

d) Cho biết đầu mũi tiện đang đặt tại điểm M(0; 60; 40). Tính khoảng cách từ M đến mặt phẳng (ABC).

Xem cách giải chi tiết

Bài 17 trang 67 Toán 12 Tập 2

Bài 17 trang 67 Toán 12 Tập 2: Cho hình hộp chữ nhật OABC.O'A'B'C', với O là gốc tọa độ, A(2; 0; 0), C(0; 6; 0), O'(0; 0; 4). Viết phương trình:

a) Mặt phẳng (O'AC);

b) Đường thẳng CO';

c) Mặt cầu đi qua các đỉnh của hình hộp.

Xem cách giải chi tiết

Bài 18 trang 67 Toán 12 Tập 2

Bài 18 trang 67 Toán 12 Tập 2: Cho ba điểm . Chứng minh rằng nếu điểm M(x; y; z) thỏa mãn thì M thuộc một mặt cầu (S). Tìm tâm và bán kính của (S).

Xem cách giải chi tiết

Giải bài tập SGK Toán 12 - Chân trời sáng tạo

Chương 1. Ứng dụng đạo hàm để khảo sát hàm số

Bài 1. Tính đơn điệu và cực trị của hàm số.

Bài 2. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số.

Bài 3. Đường tiệm cận của đồ thị hàm số.

Bài 4. Khảo sát và vẽ đồ thị một số hàm số cơ bản.

Bài tập cuối chương I.

Chương 2. Vectơ và hệ tọa độ trong không gian

Bài 1. Vectơ và các phép toán trong không gian.

Bài 2. Toạ độ của vectơ trong không gian.

Bài 3. Biểu thức toạ độ của các phép toán vectơ.

Bài tập cuối chương 2.

Chương 3. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm

Bài 1. Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm.

Bài 2. Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm.

Bài tập cuối chương 3.

Hoạt động thực hành và trải nghiệm

Bài 1. Vẽ đồ thị hàm số bằng phần mềm Geogebra 87.

Bài 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số bằng máy tính cầm tay 91.

Chương 4. Nguyên hàm. Tích phân.

Bài 1. Nguyên hàm.

Bài 2. Tích phân.

Bài 3. Ứng dụng hình học của tích phân.

Bài tập cuối chương 4.

Chương 5. Phương trình mặt phẳng, đường thẳng, mặt cầu

Bài 1. Phương trình mặt phẳng

Bài 2. Phương trình đường thẳng trong không gian

Bài 3. Phương trình mặt cầu

Bài tập cuối chương 5

Chương 6. Xác suất có điều kiện

Bài 1. Xác suất có điều kiện

Bài 2. Công thức xác suất toàn phần và công thức Bayes.

Bài tập cuối chương 6

Hoạt động thực hành và trải nghiệm

Bài 1. Tính giá trị gần đúng tích phân bằng máy tính cầm tay.

Bài 2. Minh hoạ và tính tích phân bằng phần mềm GeoGebra.

Bài 3. Sử dụng phần mềm GeoGebra để biểu diễn hình học toạ độ trong không gian.