Giải bài tập Vận dụng trang 122 Toán 11 Tập 1 | Toán 11 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Vận dụng trang 122 Toán 11 Tập 1. Bài 17: Hàm số liên tục. Toán 11 - Kết nối tri thức

Đề bài:

Giải bài toán ở tình huống mở đầu.

Đáp án và cách giải chi tiết:

Theo giả thiết, vận tốc trung bình của xe là va1803 = 60 (km/h).

Gọi v(t) là hàm biểu thị vận tốc của xe tại thời điểm t.

Tại thời điểm xuất phát t0, vận tốc của xe v(t0) = 0 nên có một thời điểm t1 xe chạy với vận tốc v(t1) > va.

Xét hàm số f(t) = v(t) – va, rõ ràng f(t) là hàm số liên tục trên đoạn [t0; t1].

Hơn nữa, ta có f(t0) = – va < 0, f(t1) = v(t1) – va > 0 (do v(t1) > va), nên tồn tại thời điểm t* thuộc khoảng (t0; t1) sao cho f(t*) = 0. Khi đó ta có v(t*) – va = 0 hay v(t*) = va = 60.

Vậy có ít nhất một thời điểm trên hành trình, xe chạy với vận tốc 60 km/h. 

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Bài 5.14 trang 122 Toán 11 Tập 1

Cho f(x) và g(x) là các hàm số liên tục tại x = 1. Biết f(1) = 2 và Bài 5.14 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11. Tính g(1).

Bài 5.15 trang 122 Toán 11 Tập 1

Xét tính liên tục của các hàm số sau trên tập xác định của chúng:

a) fx=xx2+5x+6;

b) Bài 5.15 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Bài 5.16 trang 122 Toán 11 Tập 1

Tìm giá trị của tham số m để hàm sốBài 5.16 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11liên tục trên ℝ.

Bài 5.17 trang 122 Toán 11 Tập 1

Một bảng giá cước taxi được cho như sau:

 

a) Viết công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển.

b) Xét tính liên tục của hàm số ở câu a.

Mở đầu trang 119 Toán 11 Tập 1

Một người lái xe từ địa điểm A đến địa điểm B trong thời gian 3 giờ. Biết quãng đường từ A đến B dài 180 km. Chứng tỏ rằng có ít nhất một thời điểm trên hành trình, xe chạy với vận tốc 60 km/h.

HĐ1 trang 119 Toán 11 Tập 1

Nhận biết tính liên tục của hàm số tại một điểm

Cho hàm số HĐ1 trang 119 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Tìm giới hạn limx1fx và so sánh giá trị này với f(1).

HĐ2 trang 120 Toán 11 Tập 1

Cho hai hàm số với đồ thị tương ứng như Hình 5.7.

Xét tính liên tục của các hàm số f(x) và g(x) tại điểm x = 12 và nhận xét về sự khác nhau giữa hai đồ thị.

Luyện tập 2 trang 121 Toán 11 Tập 1

Tìm các khoảng trên đó hàm số f(x) = x2+1x+2 liên tục.

HĐ3 trang 121 Toán 11 Tập 1

Cho hai hàm số f(x) = x2 và g(x) = – x + 1.

a) Xét tính liên tục của hai hàm số trên tại x = 1.

b) Tính HĐ3 trang 121 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11 và so sánh L với f(1) + g(1).

Giải bài tập Toán 11 - Kết nối tri thức

Chương 1: Hàm số lượng giác và phương trình lượng giác

Bài 1: Giá trị lượng giác của góc lượng giác

Bài 2: Công thức lượng giác

Bài 3: Hàm số lượng giác

Bài 4: Phương trình lượng giác cơ bản

Bài tập cuối chương 1

Chương 2: Dãy số. Cấp số cộng và cấp số nhân

Bài 5: Dãy số

Bài 6: Cấp số cộng

Bài 7: Cấp số nhân

Bài tập cuối chương 2

Chương 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu ghép nhóm

Bài 8: Mẫu số liệu ghép nhóm

Bài 9: Các số đặc trưng đo xu thế trung tâm

Bài tập cuối chương 3

Chương 4: Quan hệ song song trong không gian

Bài 10: Đường thẳng và mặt phẳng trong không gian

Bài 11: Hai đường thẳng song song

Bài 12: Đường thẳng và mặt phẳng song song

Bài 13: Hai mặt phẳng song song

Bài 14: Phép chiếu song song

Bài tập cuối chương 4

Chương 5: Giới hạn. Hàm số liên tục

Bài 15: Giới hạn của dãy số

Bài 16: Giới hạn của hàm số

Bài 17: Hàm số liên tục

Bài tập cuối chương 5

Hoạt động thực hành trải nghiệm - Tập 1

Một vài áp dụng của toán học trong tài chính

Lực căng mặt ngoài của nước

Hoạt động thực hành trải nghiệm - Tập 2

Một vài mô hình toán học sử dụng hàm số mũ và hàm số lôgarit

Hoạt động thực hành trải nghiệm Hình học

Chương 6: Hàm số mũ và hàm số lôgarit

Bài 18: Lũy thừa với số mũ thực

Bài 19: Lôgarit

Bài 20: Hàm số mũ và hàm số lôgarit

Bài 21: Phương trình, bất phương trình mũ và lôgarit

Bài tập cuối chương 6

Chương 7: Quan hệ vuông góc trong không gian

Bài 22: Hai đường thẳng vuông góc

Bài 23: Đường thẳng vuông góc với mặt phẳng

Bài 24: Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng

Bài 25: Hai mặt phẳng vuông góc

Bài 26: Khoảng cách

Bài 27: Thể tích

Bài tập cuối chương 7

Chương 8: Các quy tắc tính xác suất

Bài 28: Biến cố hợp, biến cố giao, biến cố độc lập

Bài 29: Công thức cộng xác suất

Bài 30: Công thức nhân xác suất cho hai biến cố độc lập

Bài tập cuối chương 8

Chương 9: Đạo hàm

Bài 31: Định nghĩa và ý nghĩa của đạo hàm

Bài 32: Các quy tắc tính đạo hàm

Bài 33: Đạo hàm cấp hai

Bài tập cuối chương 9