Giải bài tập Luyện tập 1 trang 84 Toán 10 Tập 2 | Toán 10 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Luyện tập 1 trang 84 Toán 10 Tập 2. Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển. Toán 10 - Kết nối tri thức

Đề bài:

Một tổ trong lớp 10B có 12 học sinh, trong đó có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 6 học sinh trong tổ để kiểm tra vở bài tập Toán. Tính xác suất để trong 6 học sinh được chọn số học sinh nữ bằng số học sinh nam.

Đáp án và cách giải chi tiết:

Không gian mẫu là tập tất cả các tập con gồm 6 học sinh trong 12 học sinh.

Do đó, n(Ω) = .

Gọi biến cố A: “6 học sinh được chọn số học sinh nữ bằng số học sinh nam”.

Để số học sinh nữ bằng số học sinh nam thì chọn 3 nữ và 3 nam. 

Mỗi phần tử của A được hình thành từ hai công đoạn.

Công đoạn 1. Chọn 3 học sinh nữ từ 5 học sinh nữ, có (cách chọn).

Công đoạn 2. Chọn 3 học sinh nam từ 7 học sinh nam, có (cách chọn).

Theo quy tắc nhân, tập A có 10 . 35 = 350 (phần tử). Do đó, n(A) = 350.

Vậy .

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Bài 9.9 trang 86 Toán 10 Tập 2

Bài 9.9 trang 86 Toán 10 Tập 2: Gieo liên tiếp một con xúc xắc cân đối và một đồng xu cân đối.

a) Vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu.

b) Tính xác suất của các biến cố sau:

F: “Đồng xu xuất hiện mặt ngửa”;

G: “Đồng xu xuất hiện mặt sấp hoặc số chấm xuất hiện trên con xúc xắc là 5”. 

Bài 9.10 trang 87 Toán 10 Tập 2

Bài 9.10 trang 87 Toán 10 Tập 2: Trên một phố có hai quán ăn X, Y. Ba bạn Sơn, Hải, Văn mỗi người chọn ngẫu nhiên một quán ăn.

a) Vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu.

b) Tính xác suất của biến cố “Hai bạn vào quán X, bạn còn lại vào quán Y”.

Bài 9.11 trang 87 Toán 10 Tập 2

Bài 9.11 trang 87 Toán 10 Tập 2: Gieo lần lượt hai con xúc xắc cân đối. Tính xác suất để ít nhất một con xúc xắc xuất hiện mặt 6 chấm.

Bài 9.12 trang 87 Toán 10 Tập 2

Bài 9.12 trang 87 Toán 10 Tập 2: Màu hạt của đậu Hà Lan có hai kiểu hình là màu vàng và màu xanh tương ứng với hai loại gene là gene trội A và gene lặn a. Hình dạng hạt của đậu Hà Lan có hai kiểu hình là hạt trơn và hạt nhăn tương ứng với hai loại gene là gene trội B và gene lặn b. Biết rằng, cây con lấy ngẫu nhiên một gene từ cây bố và một gene từ cây mẹ.

Phép thử là cho lai hai loại đậu Hà Lan, trong đó cả cây bố và cây mẹ đều có kiểu gene là (Aa, Bb) và kiểu hình là hạt màu vàng và trơn. Giả sử các kết quả có thể là đồng khả năng. Tính xác suất để cây con cũng có kiểu hình là hạt màu vàng và trơn.

Mở đầu trang 83 Toán lớp 10 Tập 2

Trở lại tình huống mở đầu trong Bài 26. Hãy tính xác suất trúng giải độc đắc, giải nhất của bạn An khi chọn bộ số {5; 13; 20; 31; 32; 35}. 

HĐ1 trang 83 Toán 10 Tập 2

Theo định nghĩa cổ điển của xác suất để tính xác suất của biến cố F: “Bạn An trúng giải độc đắc” và biến cố G: “Bạn An trúng giải nhất” ta cần xác định n(Ω), n(F) và n(G). Liệu có thể tính n(Ω), n(F) và n(G) bằng cách liệt kê ra hết các phần tử của Ω, F và G rồi kiểm đếm được không.

HĐ2 trang 84 Toán 10 Tập 2

Trong trò chơi "Vòng quay may mắn", người chơi sẽ quay hai bánh xe. Mũi tên ở bánh xe thứ nhất có thể dừng ở một trong hai vị trí: Loại xe 50 cc và Loại xe 110 cc. Mũi tên ở bánh xe thứ hai có thể dừng ở một trong bốn vị trí: màu đen, màu trắng, màu đỏ và màu xanh. Vị trí của mũi tên trên hai bánh xe sẽ xác định người chơi nhận được loại xe nào, màu gì.

Phép thử T là quay hai bánh xe. Hãy vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu.

Luyện tập 2 trang 85 Toán 10 Tập 2

Trở lại trò chơi “Vòng quay may mắn” ở HĐ2. Tính xác suất để người chơi nhận được loại xe 110 cc có màu trắng hoặc màu xanh.

Luyện tập 3 trang 85 Toán 10 Tập 2

Trong một cuộc tổng điều tra dân số, điều tra viên chọn ngẫu nhiên một gia đình có ba người con và quan tâm giới tính của ba người con này.

a) Vẽ sơ đồ hình cây để mô tả các phần tử của không gian mẫu.

b) Giả thiết rằng khả năng sinh con trai và khả năng sinh con gái là như nhau. Tính xác suất để gia đình đó có một con trai và hai con gái.

HĐ3 trang 85 Toán 10 Tập 2

Cho E là biến cố và Ω là không gian mẫu. Tính theo n(Ω) và n(E).

Luyện tập 4 trang 86 Toán 10 Tập 2

Cho ba hộp A, B, C. Hộp A có chứa ba thẻ mang số 1, số 2, số 3. Hộp B chứa hai thẻ mang số 2 và số 3. Hộp C chứa hai thẻ mang số 1 và số 2. Từ mỗi hộp ta rút ra ngẫu nhiên một thẻ.

a) Vẽ sơ đồ hình cây để mô tả các phần tử của không gian mẫu.

b) Gọi M là biến cố: “Trong ba thẻ rút ra có ít nhất một thẻ số 1”. Biến cố  là tập con nào của không gian mẫu?

c) Tính P(M) và .

Vận dụng trang 86 Toán 10 Tập 2

Giải bài toán trong tình huống mở đầu.

Bài 9.6 trang 86 Toán 10 Tập 2

Bài 9.6 trang 86 Toán 10 Tập 2: Chọn ngẫu nhiên một gia đình có ba con và quan sát giới tính của ba người con này. Tính xác suất của các biến cố sau:

a) A: “Con đầu là gái”;

b) B: “Có ít nhất một người con trai”.

Bài 9.7 trang 86 Toán 10 Tập 2

Bài 9.7 trang 86 Toán 10 Tập 2: Một hộp đựng các tấm thẻ đánh số 10; 11; ....; 20. Rút ngẫu nhiên từ hộp hai tấm thẻ. Tính xác suất của các biến cố sau:

a) C: “Cả hai thẻ rút được đều mang số lẻ”;

b) D: “Cả hai thẻ rút được đều mang số chẵn”.

Bài 9.8 trang 86 Toán 10 Tập 2

Bài 9.8 trang 86 Toán 10 Tập 2: Một chiếc hộp đựng 6 viên bi trắng, 4 viên bi đỏ và 2 viên bi đen. Chọn ngẫu nhiên ra 6 viên bi. Tính xác suất để trong 6 viên bi đó có 3 viên bi trắng, 2 viên bi đỏ và 1 viên bi đen.

Giải bài tập Toán 10 - Kết nối tri thức

Chương 1: Mệnh đề và tập hợp

Bài 1: Mệnh đề

Bài 2: Tập hợp và các phép toán trên tập hợp

Bài tập cuối chương 1

Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Bài 3: Bất phương trình bậc nhất hai ẩn

Bài 4: Hệ bất phương trình bậc nhất hai ẩn

Bài tập cuối chương 2

Chương 3: Hệ thức lượng trong tam giác

Bài 5: Giá trị lượng giác của một góc từ 0° đến 180°

Bài 6: Hệ thức lượng trong tam giác

Bài tập cuối chương 3

Chương 4: Vectơ

Bài 7: Các khái niệm mở đầu

Bài 8: Tổng và hiệu của hai vectơ

Bài 9: Tích của một vectơ với một số

Bài 10: Vectơ trong mặt phẳng tọa độ

Bài 11: Tích vô hướng của hai vectơ

Bài tập cuối chương 4

Chương 5: Các số đặc trưng của mẫu số liệu không ghép nhóm

Bài 12: Số gần đúng và sai số

Bài 13: Các số đặc trưng đo xu thế trung tâm

Bài 14: Các số đặc trưng đo độ phân tán

Bài tập cuối chương 5

Hoạt động thực hành trải nghiệm - Tập 1

Tìm hiểu một số kiến thức về tài chính

Mạng xã hội: Lợi và hại

Chương 6: Hàm số, đồ thị và ứng dụng

Bài 15: Hàm số

Bài 16: Hàm số bậc hai

Bài 17: Dấu của tam thức bậc hai

Bài 18: Phương trình quy về phương trình bậc hai

Bài tập cuối chương 6

Chương 7: Phương pháp tọa độ trong mặt phẳng

Bài 19: Phương trình đường thẳng

Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

Bài 21: Đường tròn trong mặt phẳng tọa độ

Bài 22: Ba đường conic

Bài tập cuối chương 7

Chương 8: Đại số tổ hợp

Bài 23: Quy tắc đếm

Bài 24: Hoán vị, chỉnh hợp và tổ hợp

Bài 25: Nhị thức Newton

Bài tập cuối chương 8

Chương 9: Tính xác suất theo định nghĩa cổ điển

Bài 26: Biến cố và định nghĩa cổ điển của xác suất

Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển

Bài tập cuối chương 9

Hoạt động thực hành trải nghiệm - Tập 2

Một số nội dung cho hoạt động trải nghiệm hình học

Ước tính số cá thể trong một quần thể