Giải bài tập Bài 7.37 trang 59 Toán 10 Tập 2 | Toán 10 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Bài 7.37 trang 59 Toán 10 Tập 2. Bài tập cuối chương 7. Toán 10 - Kết nối tri thức

Đề bài:

Bài 7.37 trang 59 Toán 10 Tập 2: Một cột trụ hình hypebol (H.7.36), có chiều cao 6 m, chỗ nhỏ nhất ở chính giữa và rộng 0,8 m, đỉnh cột và đáy cột đều rộng 1 m. Tính độ rộng của cột ở độ cao 5 m (tính theo đơn vị mét và làm tròn tới hai chữ số sau dấu phẩy).

Đáp án và cách giải chi tiết:

Chọn hệ trục tọa độ sao cho gốc tọa độ trùng với điểm chính giữa hai cột, trục Oy đi qua điểm chính giữa, hai bên cột lần lượt nằm về hai phía của trục tung (như hình vẽ).

Phương trình hypebol (H) có dạng:  𝑥2𝑎2𝑦2𝑏2=1 (với a, b > 0). 

 

Theo bài ra ta có: A1A2 = 0,8 m; AB = EH = 1 m. Khoảng cách giữa HE và AB là 6 m

(H) cắt trục hoành tại hai điểm A1, A2, ta xác định được tọa độ 2 điểm là: A1(− 0,4; 0) và A2(0,4; 0).

Thay tọa độ A2 vào phương trình (H) ta được: 0,42a2-02b2=1

Suy ra a = 0,4 (do a > 0).

Ta xác định được tọa độ điểm E là E(0,5; 3). 

(H) đi qua điểm có tọa độ E(0,5; 3) nên: 0,520,42-32b2=1

 b2 = 16  b = 4 (do b > 0).

Vậy phương trình (H) là: 𝑥20,42𝑦242=1 hay x20,16-y216=1

Gọi F là điểm thuộc hypebol mà cột có độ cao 5 m. Ở độ cao 5 m thì khoảng cách từ vị trí F đó đến trục hoành là 2 m, tương ứng ta có tung độ điểm F là y = 2, ta cần tìm hoành độ của F. 

Thay y = 2 vào phương trình (H) ta có: x20,16-2216=1

 x2 = 0,2  x ≈ ± 0,45. 

Vậy độ rộng của cột là: 0,45 . 2 = 0,9 m (độ rộng là khoảng cách nên phải dương).

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Bài 7.26 trang 59 Toán 10 Tập 2

Bài 7.26 trang 59 Toán 10 Tập 2: Phương trình nào sau đây là phương trình tham số của đường thẳng?

A. 2x – y + 1 = 0.          

B. x=2ty=t.

C. x2 + y2 = 1.              

D. y = 2x + 3.

Bài 7.27 trang 59 Toán 10 Tập 2

Bài 7.27 trang 59 Toán 10 Tập 2: Phương trình nào sau đây là phương trình tổng quát của đường thẳng?

A. – x – 2y  + 3 = 0. 

B. x=2ty=t.

C. y2 = 2x. 

D. x210+y26=1.

Bài 7.28 trang 59 Toán 10 Tập 2

Bài 7.28 trang 59 Toán 10 Tập 2: Phương trình nào sau đây là phương trình của đường tròn?

A. x2– y2 = 1.                   

B. (x – 1)2 + (y – 2)= – 4.

C. x2 + y2 = 2.                 

D. y2 = 8x.

Bài 7.29 trang 59 Toán 10 Tập 2

Bài 7.29 trang 59 Toán 10 Tập 2: Phương trình nào sau đây là phương trình chính tắc của đường elip?

A. x29+y29=1.

B. x21+y26=1.

C. x24-y21=1.

D. x22+y21=1.

Bài 7.30 trang 59 Toán 10 Tập 2

Bài 7.30 trang 59 Toán 10 Tập 2: Phương trình nào sau đây là phương trình chính tắc của đường hypebol?

A. x23-y22=-1.

B. x21-y26=1.

C. x26+y21=1.

D. x22+y21=-1.

Bài 7.31 trang 59 Toán 10 Tập 2

Bài 7.31 trang 59 Toán 10 Tập 2: Phương trình nào sau đây là phương trình chính tắc của đường parabol?

A. x2 = 4y. 

B. x2 = – 6y.

C. y2 = 4x. 

D. y2 = – 4x.  

Bài 7.32 trang 59 Toán 10 Tập 2

Bài 7.32 trang 59 Toán 10 Tập 2: Trong mặt phẳng tọa độ, cho A(1; – 1), B(3; 5), C(– 2; 4). Tính diện tích tam giác ABC.

Bài 7.33 trang 59 Toán 10 Tập 2

Bài 7.33 trang 59 Toán 10 Tập 2: Trong mặt phẳng tọa độ, cho hai điểm A(– 1; 0) và B(3; 1). 

a) Viết phương trình đường tròn tâm A và đi qua B. 

b) Viết phương trình tổng quát của đường thẳng AB. 

c) Viết phương trình đường tròn tâm O và tiếp xúc với đường thẳng AB. 

Bài 7.34 trang 59 Toán 10 Tập 2

Bài 7.34 trang 59 Toán 10 Tập 2: Cho đường tròn (C) có phương trình x2 + y2– 4x + 6y – 12 = 0.

a) Tìm tọa độ tâm I và bán kính R của (C).

b) Chứng minh rằng điểm M(5; 1) thuộc (C). Viết phương trình tiếp tuyến d của (C) tại M.

Bài 7.35 trang 59 Toán 10 Tập 2

Bài 7.35 trang 59 Toán 10 Tập 2: Cho elip (E): x2a2+y2b2=1 a>b>0.

a) Tìm các giao điểm A1, A2 của (E) với trục hoành và các giao điểm B1, B2 của (E) với trục tung. Tính A1A2,  B1B2.

b) Xét một điểm bất kì M(x0; y0) thuộc (E).

Chứng minh rằng, b2 ≤ x02 + y02 ≤ a2 và b ≤ OM ≤ a. 

Chú ý: A1A2, B1B2 tương ứng được gọi là trục lớn, trục nhỏ của elip (E) và tương ứng có độ dài là 2a, 2b. 

Bài 7.36 trang 59 Toán 10 Tập 2

Bài 7.36 trang 59 Toán 10 Tập 2: Cho hypebol có phương trình: x2a2-y2b2=1.

a) Tìm các giao điểm A1, A2 của hypebol với trục hoành (hoành độ của Anhỏ hơn của A2).

b) Chứng minh rằng, nếu điểm M(x; y) thuộc nhánh nằm bên trái trục tung của hypebol thì x ≤ − a, nếu điểm M(x; y) thuộc nhánh nằm bên phải trục tung của hypebol thì x ≥ a.

c) Tìm các điểm M1, M2 tương ứng thuộc cách nhánh bên trái, bên phải trục tung của hypebol để  M1M2 nhỏ nhất.

Giải bài tập Toán 10 - Kết nối tri thức

Chương 1: Mệnh đề và tập hợp

Bài 1: Mệnh đề

Bài 2: Tập hợp và các phép toán trên tập hợp

Bài tập cuối chương 1

Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Bài 3: Bất phương trình bậc nhất hai ẩn

Bài 4: Hệ bất phương trình bậc nhất hai ẩn

Bài tập cuối chương 2

Chương 3: Hệ thức lượng trong tam giác

Bài 5: Giá trị lượng giác của một góc từ 0° đến 180°

Bài 6: Hệ thức lượng trong tam giác

Bài tập cuối chương 3

Chương 4: Vectơ

Bài 7: Các khái niệm mở đầu

Bài 8: Tổng và hiệu của hai vectơ

Bài 9: Tích của một vectơ với một số

Bài 10: Vectơ trong mặt phẳng tọa độ

Bài 11: Tích vô hướng của hai vectơ

Bài tập cuối chương 4

Chương 5: Các số đặc trưng của mẫu số liệu không ghép nhóm

Bài 12: Số gần đúng và sai số

Bài 13: Các số đặc trưng đo xu thế trung tâm

Bài 14: Các số đặc trưng đo độ phân tán

Bài tập cuối chương 5

Hoạt động thực hành trải nghiệm - Tập 1

Tìm hiểu một số kiến thức về tài chính

Mạng xã hội: Lợi và hại

Chương 6: Hàm số, đồ thị và ứng dụng

Bài 15: Hàm số

Bài 16: Hàm số bậc hai

Bài 17: Dấu của tam thức bậc hai

Bài 18: Phương trình quy về phương trình bậc hai

Bài tập cuối chương 6

Chương 7: Phương pháp tọa độ trong mặt phẳng

Bài 19: Phương trình đường thẳng

Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

Bài 21: Đường tròn trong mặt phẳng tọa độ

Bài 22: Ba đường conic

Bài tập cuối chương 7

Chương 8: Đại số tổ hợp

Bài 23: Quy tắc đếm

Bài 24: Hoán vị, chỉnh hợp và tổ hợp

Bài 25: Nhị thức Newton

Bài tập cuối chương 8

Chương 9: Tính xác suất theo định nghĩa cổ điển

Bài 26: Biến cố và định nghĩa cổ điển của xác suất

Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển

Bài tập cuối chương 9

Hoạt động thực hành trải nghiệm - Tập 2

Một số nội dung cho hoạt động trải nghiệm hình học

Ước tính số cá thể trong một quần thể