Giải bài tập Bài 5.26 trang 90 Toán 10 Tập 1 | Toán 10 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Bài 5.26 trang 90 Toán 10 Tập 1. Bài tập cuối chương 5. Toán 10 - Kết nối tri thức

Đề bài:

Bài 5.26 trang 90 Toán 10 Tập 1: Tỉ lệ trẻ em suy dinh dưỡng (tính theo cân nặng tương ứng với độ tuổi) của 10 tỉnh thuộc Đồng bằng sông Hồng được cho như sau:

5,5   13,8   10,2   12,2   11,0   7,4   11,4   13,1    12,5   13,4.

a) Tính số trung bình, trung vị, khoảng biến thiên và độ lệch chuẩn của mẫu số liệu trên.

b) Thực hiện làm tròn đến hàng đơn vị cho cá giá trị trong mẫu số liệu. Sai số tuyệt đồi của phép làm tròn này không vượt quá bao nhiêu?

Đáp án và cách giải chi tiết:

a) Số trung bình của mẫu số liệu là:

 

Sắp xếp dãy số liệu theo thứ tự không giảm, ta được:

5,5; 7,4; 10,2; 11,0; 11,4; 12,2; 12,5; 13,1; 13,4; 13,8.

Vì n = 10 là số chẵn nên số trung vị là trung bình cộng của hai giá trị chính giữa:

(11,4 + 12,2) : 2 = 11,8.

Ta có giá trị lớn nhất của số liệu là 13,8 và giá trị nhỏ nhất là 5,5. Khi đó khoảng biến thiên là: R = 13,8 – 5,5 = 8,3.

b) Thực hiện làm tròn đến hàng đơn vị cho các giá trị trong mẫu số liệu, ta được:

5,5; 7,4; 10,2; 11,0; 11,4; 12,2; 12,5; 13,1; 13,4; 13,8.

6 ; 7; 10; 11; 11; 12; 13; 13; 13; 14.

Sai số của phép làm tròn này không vượt quá

a

𝑎¯ 𝑎𝑎¯

6

5,5

0,5

7

7,4

0,4

10

10,2

0,2

11

11,0

0

11

11,4

0,4

12

12,2

0,2

13

12,5

0,5

13

13,1

0,1

13

13,4

0,4

14

13,8

0,2

 

Sai số tuyệt đối của phép làm tròn này không vượt quá 0,5.

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Bài 5.17 trang 89 Toán 10 Tập 1

Bài 5.17 trang 89 Toán 10 Tập 1: Khi cân một bao gạo bằng một cân treo với thang chia 0,2kg thì độ chính xác d là:

A. 0,1 kg.

B. 0,2kg.

C. 0,3 kg.

D. 0,4kg.

Bài 5.18 trang 89 Toán 10 Tập 1

Bài 5.18 trang 89 Toán 10 Tập 1: Trong hai mẫu số liệu, mẫu nào có phương sai lớn hơn thì có độ lệch chuẩn lớn hơn là đúng hay sai?

A. Đúng

B. Sai

Bài 5.19 trang 89 Toán 10 Tập 1

Bài 5.19 trang 89 Toán 10 Tập 1: Có 25% giá trị của mẫu số liệu nằm giữa Q1 và Q3, đúng hay sai?

A. Đúng.

B. Sai.

Bài 5.20 trang 89 Toán 10 Tập 1

Bài 5.20 trang 89 Toán 10 Tập 1: Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?

A. Số trung bình.

B. Mốt.

C. Trung vị.

D. Độ lệch chuẩn.

Bài 5.21 trang 89 Toán 10 Tập 1

Bài 5.21 trang 89 Toán 10 Tập 1: Điểm trung bình môn học kì I một số môn học của An là: 8; 9; 7; 6; 5; 7; 3. Nếu An được cộng thêm mỗi môn 0,5 điểm chuyên cần thì các số đặc trưng nào sau đây của mẫu số liệu không thay đổi?

Bài 5.22 trang 89 Toán 10 Tập 1

Bài 5.22 trang 89 Toán 10 Tập 1: Lương khởi điểm của 5 sinh viên vừa tốt nghiệp tại một trường học (đơn vị: triệu đồng) là:

3,5     9,2     9,2     9,5     10,5.

a) Giải thích tại sao nên dùng trung vị để thể hiện mức lương khởi điểm của sinh viên tốt nghiệp từ trường đại học này.

b) Nên dùng khoảng biến thiên hay khoảng tứ phân vị để đo độ phân tán.

Bài 5.23 trang 89 Toán 10 Tập 1

Bài 5.23 trang 89 Toán 10 Tập 1: Điểm Toán và Tiếng Anh của 11 học sinh lớp 10 được cho trong bảng sau:

Hãy so sánh mức độ học đều của học sinh môn Tiếng Anh và môn Toán thông qua các số đặc trưng: khoảng biến thiên, khoảng tứ phân vị, độ lệch chuẩn.

Bài 5.24 trang 90 Toán 10 Tập 1

Bài 5.24 trang 90 Toán 10 Tập 1: Bảng sau cho biết dân số của các tỉnh/thành phố Đồng bằng Bắc Bộ năm 2018 (đơn vị triệu người).

a) Tìm số trung bình và trung vị của mẫu số liệu trên.

b) Giải thích tại sao số trung bình và trung vị lại có sự sai khác nhiều.

c) Nên sử dụng số trung bình hay trung vị đại diện cho dân số các tỉnh thuộc Đồng bằng Bắc Bộ?

Bài 5.25 trang 90 Toán 10 Tập 1

Bài 5.25 trang 90 Toán 10 Tập 1: Hai mẫu số liệu sau đây cho biết số lượng trường Trung học phổ thông ở mỗi tỉnh thuộc Đồng bằng Bắc Bộ?

Đồng bằng sông Hồng: 187  34   35   46   54    57   37   39   23   57   27.

Đồng bằng sông Cửu Long: 33   34   33   29   24   39   42   24   23   19   24   15   26.

a) Tính số trung bình, trung vị, các tứ phân vị, mốt, khoảng biến thiên, khoảng tứ phân vị, độ lệch chuẩn cho mỗi mẫu số liệu trên.

b) Tại sao số trung bình của hai mẫu số liệu có sự sai khác nhiều trong khi trung vị thì không?

c) Tại sao khoảng biến thiên và độ lệch chuẩn của hai mẫu số liệu khác nhau nhiều trong khi khoảng tứ phân vị thì không?

Giải bài tập Toán 10 - Kết nối tri thức

Chương 1: Mệnh đề và tập hợp

Bài 1: Mệnh đề

Bài 2: Tập hợp và các phép toán trên tập hợp

Bài tập cuối chương 1

Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Bài 3: Bất phương trình bậc nhất hai ẩn

Bài 4: Hệ bất phương trình bậc nhất hai ẩn

Bài tập cuối chương 2

Chương 3: Hệ thức lượng trong tam giác

Bài 5: Giá trị lượng giác của một góc từ 0° đến 180°

Bài 6: Hệ thức lượng trong tam giác

Bài tập cuối chương 3

Chương 4: Vectơ

Bài 7: Các khái niệm mở đầu

Bài 8: Tổng và hiệu của hai vectơ

Bài 9: Tích của một vectơ với một số

Bài 10: Vectơ trong mặt phẳng tọa độ

Bài 11: Tích vô hướng của hai vectơ

Bài tập cuối chương 4

Chương 5: Các số đặc trưng của mẫu số liệu không ghép nhóm

Bài 12: Số gần đúng và sai số

Bài 13: Các số đặc trưng đo xu thế trung tâm

Bài 14: Các số đặc trưng đo độ phân tán

Bài tập cuối chương 5

Hoạt động thực hành trải nghiệm - Tập 1

Tìm hiểu một số kiến thức về tài chính

Mạng xã hội: Lợi và hại

Chương 6: Hàm số, đồ thị và ứng dụng

Bài 15: Hàm số

Bài 16: Hàm số bậc hai

Bài 17: Dấu của tam thức bậc hai

Bài 18: Phương trình quy về phương trình bậc hai

Bài tập cuối chương 6

Chương 7: Phương pháp tọa độ trong mặt phẳng

Bài 19: Phương trình đường thẳng

Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

Bài 21: Đường tròn trong mặt phẳng tọa độ

Bài 22: Ba đường conic

Bài tập cuối chương 7

Chương 8: Đại số tổ hợp

Bài 23: Quy tắc đếm

Bài 24: Hoán vị, chỉnh hợp và tổ hợp

Bài 25: Nhị thức Newton

Bài tập cuối chương 8

Chương 9: Tính xác suất theo định nghĩa cổ điển

Bài 26: Biến cố và định nghĩa cổ điển của xác suất

Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển

Bài tập cuối chương 9

Hoạt động thực hành trải nghiệm - Tập 2

Một số nội dung cho hoạt động trải nghiệm hình học

Ước tính số cá thể trong một quần thể