Giải bài tập Bài 5.13 trang 88 Toán 10 Tập 1 | Toán 10 - Kết nối tri thức
Hướng dẫn giải chi tiết từng bước bài tập Bài 5.13 trang 88 Toán 10 Tập 1. Bài 14: Các số đặc trưng đo độ phân tán. Toán 10 - Kết nối tri thức
Đề bài:
Bài 5.13 trang 88 Toán 10 Tập 1: Cho mẫu số liệu gồm 10 số dương không hoàn toàn giống nhau. Các số đo độ phân tán (khoảng biến thiên, khoảng tứ phân vị, độ lệch chuẩn) sẽ thay đổi như thế nào nếu:
a) Nhân mỗi giá trị của mẫu số liệu với 2.
b) Cộng mỗi giá trị của mẫu số liệu với 2.
Đáp án và cách giải chi tiết:
a) Gọi các giá trị dương của mẫu số liệu ban đầu theo thứ tự từ bé đến lớn là: a; b; c; d; e; f; g; h; i; k.
Số trung bình cộng của mẫu số liệu là:
Phương sai
Độ lệch chuẩn
Giá trị lớn nhất là k, giá trị nhỏ nhất là a. Khi đó khoảng biến thiên: R = k – a.
Vì n=10 nên trung vị là trung bình cộng hai giá trị chính giữa:
Nửa mẫu số liệu bên trái có tứ phân vị thứ nhất là
Nửa mẫu số liệu bên phải có tứ phân vị thứ ba là
Khi đó khoảng tứ phân vị là:
Nhân mỗi giá trị của mẫu số liệu với 2 ta được dãy số liệu mới theo thứ tự từ bé đến lớn là: 2a; 2b; 2c; 2d; 2e; 2f; 2g; 2h; 2i; 2k.
Khi đó Số trung bình cộng của mẫu số liệu là
Phương sai:
Độ lệch chuẩn:
Giá trị lớn nhất là k, giá trị nhỏ nhất là a. Khi đó khoảng biến thiên: R’ = 2k – 2a = 2R.
Ta có: tứ phân vị thứ nhất, thứ hai và thứ ba lần lượt là ; ;
Khi đó khoảng tứ phân vị là:
Vậy các khoảng biến thiên, độ lệch chuẩn, khoảng tứ phân vị của dãy số liệu mới bằng hai lần các khoảng biến thiên, độ lệch chuẩn, khoảng tứ phân vị ban đầu.
b)
Các giá trị dương của mẫu số liệu khi cộng thêm mẫu số liệu với 2 ta được: a + 2; b + 2; c + 2; d + 2; e + 2; f + 2; g + 2; h + 2; i + 2; k + 2.
Số trung bình cộng của mẫu số liệu là:
Phương sai:
Độ lệch chuẩn:
Giá trị lớn nhất là k, giá trị nhỏ nhất là a. Khi đó khoảng biến thiên: R’ = 2 + k – (2 + a) = k – a = R.
Ta có: tứ phân vị thứ nhất, thứ hai và thứ ba lần lượt là ;;.
Khi đó khoảng tứ phân vị là:
Nguồn: loigiaitoan.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Bài tập liên quan:
Bài 5.11 trang 88 Toán 10 Tập 1
Bài 5.11 trang 88 Toán 10 Tập 1: Mỗi khẳng định sau đúng hay sai?
(1) Nếu các giá trị của mẫu số liệu càng tập trung quanh giá trị trung bình thì độ lệch chuẩn càng lớn.
(2) Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất , bỏ qua thông tin của các giá trị còn lại.
(3) Khoảng tứ phân vị có sử dụng thông tin của giá trị lớn nhất, giá trị bé nhất.
(4) Khoảng tứ phân vị chính là khoảng biến thiên của nửa dưới mẫu số liệu đã sắp xếp.
(5) Các số đo độ phân tán đều không âm.
Bài 5.12 trang 88 Toán 10 Tập 1
Bài 5.12 trang 88 Toán 10 Tập 1: Cho hai biểu đồ chấm điểm biểu diễn hãi mẫu số liệu A, B như sau:
Không tính toán, hãy cho biết:
a) Hai mẫu số liệu này có cùng khoảng biến thiên và số trung bình không?
b) Mẫu số liệu nào có phương sai lớn hơn?
Bài 5.14 trang 88 Toán 10 Tập 1
Bài 5.14 trang 88 Toán 10 Tập 1: Từ mẫu số liệu về thuế thuốc lá của 51 thành phố tại một quốc gia, người ta tính được:
Giá trị nhỏ nhất bằng 2,5; Q1 = 36; Q2 = 60; Q3 = 100; giá trị lớn nhất bằng 205.
a) Tỉ lệ thành phố có thuế thuốc lá lớn hơn 36 là bao nhiêu?
b) Chỉ ra hai giá trị sao cho có 50% giá trị của mẫu số liệu nằm giữa hai giá trị này?
c) Tìm khoảng tứ phân vị của mẫu số liệu.
Bài 5.15 trang 88 Toán 10 Tập 1
Bài 5.15 trang 88 Toán 10 Tập 1: Mẫu số liệu sau đây cho biết cân nặng của 10 trẻ sơ sinh (đơn vị kg):
2,977 3,155 3,920 3,412 4,236
2,593 3,270 3,813 4,042 3,387.
Hãy tìm khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn cho mẫu số liệu này.
Bài 5.16 trang 88 Toán 10 Tập 1
Bài 5.16 trang 88 Toán 10 Tập 1: Tỉ lệ thất nghiệp ở một quốc gia vào năm 2007 (đơn vị %) được cho như sau:
7,8 3,2 7,7 8,7 8,6 8,4 7,2 3,6
5,0 4,4 6,7 7,0 4,5 6,0 5,4.
Hãy tìm các giá trị bất thường (nếu có) của mẫu số liệu trên.
Mở đầu trang 84 Toán 10 Tập 1
Dưới đây là điểm trung bình môn học kì I của hai bạn An và Bình:
Điểm trung bình môn học kì của An và Bình đều là 8,0 nhưng rõ ràng Bình “học đều” hơn An. Có thể dùng những số đặc trưng nào để đo mức độ “học đều”?
HĐ1 trang 84 Toán 10 Tập 1
Một cổ động viên của câu lạc bộ Everton, Anh đã thống kê điểm số mà hai câu lạc bộ Leicester City và Everton đạt được trong năm mùa giải Ngoại hạng Anh gần đây, từ mùa giải 2014 – 2015 đến mùa giải 2018 – 2019 như sau:
Leicester City: 41 81 44 47 52.
Everton: 47 47 61 49 54.
Cổ động viên cho rằng, Everton thi đấu ổn hơn Leicester City. Em có đồng ý với nhận định này không? Vì sao?
Luyện tập 1 trang 85 Toán 10 Tập 1
Mẫu số liệu sau cho biết chiều cao (đơn vị cm) của các bạn trong tổ:
163 159 172 167 165 168 170 161.
Tính khoảng biến thiên của mẫu số liệu này.
HĐ2 trang 85 Toán 10 Tập 1
Trong một tuần, nhiệt độ cao nhất trong ngày (đơn vị 0C) tại hai thành phố Hà Nội và Điện Biên được cho như sau:
Hà Nội: 23 25 28 28 32 33 35.
Điện Biên: 16 24 26 26 26 27 28.
a) Tính khoảng biến thiên của mỗi mẫu số liệu và so sánh.
b) Em có nhận xét gì về sự ảnh hưởng của giá trị 16 đến khoảng biến thiên của mẫu số liệu về nhiệt độ cao nhất trong ngày tại Điện Biên?
c) Tính các tứ phân vị và hiệu Q3 – Q1 cho mỗi mẫu số liệu. Có thể dùng hiệu này để đo độ phân tán của mẫu số liệu không?
Luyện tập 2 trang 86 Toán 10 Tập 1
Mẫu số liệu sau đây cho biết số bài hát ở mỗi album trong bộ sưu tập của An:
12 7 10 9 12 9 10 11 10 14.
Hãy tìm khoảng tứ phân vị cho mẫu số liệu này.
Luyện tập 3 trang 87 Toán 10 Tập 1
Dùng đồng hồ đo thời gian có độ chia nhỏ nhất đến 0,001 giây để đo 7 lần thời gian rơi tự do của một vật bắt đầu từ điểm A (VA = 0) đến điểm B. Kết quả đo như sau:
0,398 0,399 0,408 0,410 0,406 0,405 0,402.
(Theo Bài tập Vật lí 10, Nhà xuất bản Giáo dục Việt Nam, 2018)
Hãy tìm phương sai và độ lệch chuẩn cho mẫu số liệu này. Qua các đại lượng này, em có nhận xét gì về độ chính xác của phép đo trên?
Luyện tập 4 trang 87 Toán 10 Tập 1
Một mẫu số liệu có tứ phân vị thứ nhất là 56 và tứ phân vị thứ ba là 84. Hãy kiểm tra xem trong hai giá trị 10 và 100 giá trị nào được xem là giá trị bất thường.