Giải bài tập Bài 2.6 trang 30 Toán 10 Tập 1 | Toán 10 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Bài 2.6 trang 30 Toán 10 Tập 1. Bài 4: Hệ bất phương trình bậc nhất hai ẩn. Toán 10 - Kết nối tri thức

Đề bài:

Bài 2.6 trang 30 Toán 10 Tập 1: Một gia đình cần ít nhất 900 đơn vị protein và 400 đơn vị lipid trong thức ăn mỗi ngày. Mỗi kilôgam thịt bò chứa 800 đơn vị protein và 200 đơn vị lipid. Mỗi kilôgam thịt lợn chứa 600 đơn vị protein và 400 đơn vị lipid. Biết rằng gia đình này chỉ mua nhiều nhất là 1,6 kg thịt bò và 1,1 kg thịt lợn; giá tiền 1 kg thịt bò là 250 nghìn đồng; 1 kg thịt lợn là 160 nghìn đồng. Giả sử gia đình đó mua x kilôgam thịt bò và y kilôgam thịt lợn.

a) Viết các bất phương trình biểu thị các điều kiện của bài toán thành một hệ bất phương trình rồi xác định miền nghiệm của hệ đó.

b) Gọi F (nghìn đồng) là số tiền phải trả cho x kilôgam thịt bò và y kilôgam thịt lợn. Hãy biểu diễn F theo x và y.

c) Tìm số kilôgam thịt mỗi loại mà gia đình cần mua để chi phí là ít nhất.

Đáp án và cách giải chi tiết:

a) Vì gia đình này chỉ mua nhiều nhất là 1,6kg thịt bò và 1,1kg thịt lợn nên 0 ≤ x ≤ 1,6; 0 ≤ y ≤ 1,1

Trong x kilôgam thịt bò và y kilôgam thịt lợn chứa số đơn vị protein là: 800x + 600y (đơn vị)

Do số đơn vị protein cần ít nhất là 900 đơn vị nên ta có: 800x + 600y ≥ 900 hay 8x + 6y ≥ 9

Trong x kilôgam thịt bò và y kilôgam thịt lợn chứa số đơn vị lipid là: 200x + 400y (đơn vị)

Do số đơn vị lipid cần ít nhất là 400 đơn vị nên ta có: 200x + 400y ≥ 400 hay x + 2y ≥ 2

Khi đó ta có hệ bất phương trình:

Miền nghiệm của hệ bất phương trình là miền tứ giác ABCD với tọa độ các đỉnh là A(0,3; 1,1), B(0,6; 0,7), C(1,6; 0,2), D(1,6; 1,1).

b) Số tiền gia đình đó phải trả để mua x kilôgam thịt bò và y kilôgam thịt lợn là:

F(x;y) = 250x + 160y (nghìn đồng)

Vậy F(x;y) = 250x +  160y

c) Ta cần tìm giá trị nhỏ nhất của F(x; y) khi (x; y) thỏa mãn hệ bất phương trình ở câu a.

Người ta đã chứng minh được để số tiền mua là ít nhất thì (x; y) sẽ là tọa độ của một trong bốn đỉnh của tứ giác ABCD.

Tính giá trị của F tại các đỉnh của tứ giác:

F(0,3; 1,1) = 250 . 0,3 + 160 . 1,1 = 251;

F(0,6; 0,7) = 250 . 0,6 + 160 . 0,7 = 262;

F(1,6; 0,2) = 250 . 1,6 + 160 . 0,2 = 432;

F(1,6; 1,1) = 250 . 1,6 + 160 . 1,1 = 576.

Suy ra giá trị nhỏ nhất cần tìm là F(0,3; 1,1) = 251.

Vậy để chi phí là ít nhất thì gia đình cần mua 0,3 kilôgam thịt bò và 1,1 kilôgam thịt lợn.

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Mở đầu trang 26 Toán 10 Tập 1

Trong năm nay, một cửa hàng điện lạnh dự định kinh doanh hai loại máy điều hòa: điều hòa hai chiều và điều hòa một chiều với số vốn ban đầu không vượt quá 1,2 tỉ đồng.

Cửa hàng ước tính rằng tổng nhu cầu của thị trường sẽ không vượt quá 100 máy cả hai loại. Nếu là chủ cửa hàng thì em cần đầu tư kinh doanh mỗi loại bao nhiêu máy để lợi nhuận thu được là lớn nhất?

HĐ1 trang 26 Toán 10 Tập 1

Trong tình huống mở đầu, gọi x và y lần lượt là số máy điều hòa hai chiều và một chiều mà cửa hàng cần nhập. Tính số tiền vốn cửa hàng phải bỏ ra để nhập hai loại máy điều hòa theo x và y.

a) Do nhu cầu của thị trường không quá 100 máy nên x và y cần thỏa mãn điều kiện gì?

b) Vì số vốn mà chủ cửa hàng có thể đầu tư không vượt quá 1,2 tỉ đồng nên x và y phải thỏa mãn điều kiện gì?

c) Tính số tiền lãi mà chủ cửa hàng dự kiến thu được theo x và y.

Luyện tập 1 trang 27 Toán 10 Tập 1

Trong tình huống mở đầu, gọi x và y lần lượt là số máy điều hòa hai chiều, một chiều mà cửa hàng cần nhập. Từ HĐ1, viết hệ bất phương trình hai ẩn x, y và chỉ ra một nghiệm của hệ này.

HĐ2 trang 27 Toán 10 Tập 1

Cho đường thẳng d: x + y = 150 trên mặt phẳng tọa độ Oxy. Đường thẳng này cắt hai trục tọa độ Ox và Oy tại hai điểm A và B.

a) Xác định các miền nghiệm D1, D2, D3 của các bất phương trình tương ứng x ≥ 0, y ≥ 0 và x + y ≤ 150.

b) Miền tam giác OAB (H.2.5) có phải là giao của các miền nghiệm D1, D2, D3 hay không?

c) Lấy một điểm trong tam giác OAB (chẳng hạn điểm (1;2)) hoặc một điểm trên cạnh nào đó của tam giác OAB (chẳng hạn điểm (1;149)) và kiểm tra xem tọa độ của các điểm đó có phải là nghiệm của hệ bất phương trình sau hay không:

Luyện tập 2 trang 28 Toán 10 Tập 1

Biểu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn sau trên mặt phẳng tọa độ: 

HĐ3 trang 28 Toán 10 Tập 1

Xét biểu thức F(x; y) = 2x + 3y với (x; y) thuộc miền tam giác OAB ở HĐ2. Tọa độ ba đỉnh là O(0;0), A(150; 0) và B(0; 150) (H.2.5).

a) Tính giá trị của biểu thức F(x; y) tại mỗi đỉnh O, A và B.

b) Nêu nhận xét về dấu của hoành độ x và tung độ y của điểm (x; y) nằm trong miền tam giác OAB. Từ đó suy ra giá trị nhỏ nhất của F(x; y) trên miền tam giác OAB.

c) Nêu nhận xét về tổng x + y của điểm (x; y) nằm trong miền tam giác OAB. Từ đó suy ra giá trị lớn nhất của F(x; y) trên miền tam giác OAB.

Vận dụng trang 30 Toán 10 Tập 1

Một cửa hàng có kế hoạch nhập về hai loại máy tính A và B, giá mỗi chiếc lần lượt là 10 triệu đồng và 20 triệu đồng với số vốn ban đầu không vượt quá 4 tỉ đồng. Loại máy A mang lại lợi nhuận 2,5 triệu đồng cho mỗi máy bán được và loại máy B mang lại lợi nhuận là 4 triệu đồng mỗi máy. Cửa hàng ước tính rằng tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy. Giả sử trong một tháng cửa hàng cần nhập số máy tính loại A là x và số máy tính loại B là y.

a) Viết các bất phương trình biểu thị các điều kiện của bài toán thành một hệ bất phương trình rồi xác định miền nghiệm của hệ đó.

b) Gọi F (triệu đồng) là lợi nhuận mà cửa hàng thu được trong tháng đó khi bán x máy tính loại A và y máy tính loại B. Hãy biểu diễn F theo x và y.

c) Tìm số lượng máy tính mỗi loại cửa hàng cần nhập về trong tháng đó để lợi nhuận thu được là lớn nhất.

Bài 2.4 trang 30 Toán 10 Tập 1

Bài 2.4 trang 30 Toán 10 Tập 1: Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?

a)

b)

c)

d)

Bài 2.5 trang 30 Toán 10 Tập 1

Bài 2.5 trang 30 Toán 10 Tập 1: Biểu diễn miền nghiệm của mỗi hệ bất phương trình sau trên mặt phẳng tọa độ: 

a)

b)

c)

Giải bài tập Toán 10 - Kết nối tri thức

Chương 1: Mệnh đề và tập hợp

Bài 1: Mệnh đề

Bài 2: Tập hợp và các phép toán trên tập hợp

Bài tập cuối chương 1

Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Bài 3: Bất phương trình bậc nhất hai ẩn

Bài 4: Hệ bất phương trình bậc nhất hai ẩn

Bài tập cuối chương 2

Chương 3: Hệ thức lượng trong tam giác

Bài 5: Giá trị lượng giác của một góc từ 0° đến 180°

Bài 6: Hệ thức lượng trong tam giác

Bài tập cuối chương 3

Chương 4: Vectơ

Bài 7: Các khái niệm mở đầu

Bài 8: Tổng và hiệu của hai vectơ

Bài 9: Tích của một vectơ với một số

Bài 10: Vectơ trong mặt phẳng tọa độ

Bài 11: Tích vô hướng của hai vectơ

Bài tập cuối chương 4

Chương 5: Các số đặc trưng của mẫu số liệu không ghép nhóm

Bài 12: Số gần đúng và sai số

Bài 13: Các số đặc trưng đo xu thế trung tâm

Bài 14: Các số đặc trưng đo độ phân tán

Bài tập cuối chương 5

Hoạt động thực hành trải nghiệm - Tập 1

Tìm hiểu một số kiến thức về tài chính

Mạng xã hội: Lợi và hại

Chương 6: Hàm số, đồ thị và ứng dụng

Bài 15: Hàm số

Bài 16: Hàm số bậc hai

Bài 17: Dấu của tam thức bậc hai

Bài 18: Phương trình quy về phương trình bậc hai

Bài tập cuối chương 6

Chương 7: Phương pháp tọa độ trong mặt phẳng

Bài 19: Phương trình đường thẳng

Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

Bài 21: Đường tròn trong mặt phẳng tọa độ

Bài 22: Ba đường conic

Bài tập cuối chương 7

Chương 8: Đại số tổ hợp

Bài 23: Quy tắc đếm

Bài 24: Hoán vị, chỉnh hợp và tổ hợp

Bài 25: Nhị thức Newton

Bài tập cuối chương 8

Chương 9: Tính xác suất theo định nghĩa cổ điển

Bài 26: Biến cố và định nghĩa cổ điển của xác suất

Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển

Bài tập cuối chương 9

Hoạt động thực hành trải nghiệm - Tập 2

Một số nội dung cho hoạt động trải nghiệm hình học

Ước tính số cá thể trong một quần thể