Giải bài tập Bài 1 trang 73 Toán 12 Tập 1 | SGK Toán 12 - Chân trời sáng tạo

Hướng dẫn giải chi tiết từng bước bài tập Bài 1 trang 73 Toán 12 Tập 1. Bài 1. Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm.. SGK Toán 12 - Chân trời sáng tạo

Đề bài:

Bài 1 trang 73 Toán 12 Tập 1: Bảng sau thống kê lượng mưa (đơn vị: mm) đi được vào tháng 7 từ năm 2002 đến 2021 tại một trạm quan trắc đặt ở Cà Mau.

341,4 187,1 242,2 522,9 251,4 432,2 200,7 388,6 258,4 288,5
298,1 413,5 413,5 332 421 475 400 305 520 147

(Nguồn: Tổng cục Thống kê)

a) Hãy tìm khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu trên.

b) Hãy chia mẫu số liệu trên thành 4 nhóm với nhóm đầu tiên là [140; 240) và lập bảng tần số ghép nhóm.

c) Hãy tìm khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm và so sánh với kết quả tương ứng thu được ở câu a).

Đáp án và cách giải chi tiết:

a) Sắp xếp lại mẫu số liệu trên theo thứ tự không giảm, ta được:

147 187,1 200,7 242,2 251,4 258,4 288,5  298,1 305 332 341,4 388,6 400 413,5  413,5 421 432,2 475 520 522,9

Khoảng biến thiên của mẫu số liệu trên là: 

R = 522,9  147 = 375,9 (mm).

Cỡ mẫu n = 20.

Tứ phân vị thứ nhất là trung vị của mẫu số liệu:

147; 187,1; 200,7; 242,2; 251,4; 258,4 ; 288,5; 298,1; 305 ; 332.

Do đó, Q1 = 251,4 + 258,42 = 254,9.

Tứ phân vị thứ ba là trung vị của mẫu số liệu:

341,4; 388,6 ; 400; 413,5; 413,5 ; 421; 432,2; 475; 520; 522,9.

Do đó, Q3 = 413,5 + 4212 = 417,25.

Khoảng tứ phân vị của mẫu số liệu đã cho là:

Q = Q3 - Q1 = 417,25  254,9 = 162,35.

b) Nhóm đầu tiên là [140; 240), ta chọn 3 nhóm còn lại là

[240; 340), [340; 440), [440; 540).

Từ bảng thống kê ban đầu, ta lập được bảng tần số ghép nhóm như sau:

Lượng mưa (mm) [140; 240) [240; 340) [340; 440) [440; 540)
Số tháng 3 7 7 3

c) Cỡ mẫu n = 20.

Khoảng biến thiên của mẫu số liệu ghép nhóm là

R' = 540  140 = 400 (mm).

Gọi x1; x2; ...; x20 là mẫu số liệu gốc về lượng mưa đo được vào tháng 7 từ năm 2002 đến 2021 tại một trạm quan trắc đặt ở Cà Mau được xếp theo thứ tự không giảm.

Ta có x1; x2; x3 [140; 240), x4; ...; x10  [240; 340), 

         x11; ...; x17  [340; 440), x18; x19; x20  [440; 540).

Tứ phân vị thứ nhất của mẫu số liệu gốc là  [240; 340).

Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

Q'1 = 240 + 204 - 37 340 - 240 = 18807.

Tứ phân vị thứ ba của mẫu số liệu gốc là 12x15 + x16  [340; 440).

Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

Q'3 = 340 + 3.204 - 3 + 77440 - 340 = 28807.

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

Q' = Q'3 - Q'1 = 28807 - 18807 = 10007  142,86.

Ta thấy khoảng biến thiên của mẫu số liệu ghép nhóm lớn hơn mẫu số liệu đã cho; khoảng tứ phân vị của mẫu số liệu ghép nhóm nhỏ hơn mẫu số liệu đã cho.

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Các công thức liên quan:

Mẫu số liệu ghép nhóm. Số trung bình; Mốt; Trung vị; Tứ phân vị; Phương sai và độ lệch chuẩn

Số liệu ghép nhóm. Khoảng biến thiên. Số trung bình. Mốt. Trung vị. Tứ phân vị. Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm. Lớp 11 và 12.

Bài tập liên quan:

Bài 2 trang 74 Toán 12 Tập 1

Bài 2 trang 74 Toán 12 Tập 1: Biểu đồ dưới đây biểu diễn số lượt khách hàng đặt bàn qua hình thức trực tuyến mỗi ngày trong quý III năm 2022 của một nhà hàng. Cột thứ nhất biểu diễn số ngày có từ 1 đến dưới 6 lượt đặt bàn; cột thứ hai biểu diễn số ngày có từ 6 đến dưới 11 lượt đặt bàn; …

Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm cho bởi biểu đồ trên.

 

Bài 3 trang 74 Toán 12 Tập 1

Bài 3 trang 74 Toán 12 Tập 1: Kết quả đo chiều cao của 100 cây keo 3 năm tuổi tại một nông trường được cho ở bảng sau:

Chiều cao (m) [8,4; 8,6) [8,6; 8,8) [8,8; 9,0) [9,0; 9,2) [9,2; 9,4)
Số cây 5 12 25 44 14

a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.

b) Trong 100 cây keo trên có 1 cây cao 8,4 m. Hỏi chiều cao của cây keo này có phải là giá trị ngoại lệ không?

Bài 4 trang 74 Toán 12 Tập 1

Bài 4 trang 74 Toán 12 Tập 1: Hai bảng tần số ghép nhóm dưới đây thống kê theo độ tuổi số lượng thành viên nam và thành viên nữ đang sinh hoạt trong một câu lạc bộ dưỡng sinh.

a) Hãy tính các khoảng tứ phân vị của tuổi nam giới và nữ giới trong mỗi bảng số liệu ghép nhóm trên.

b) Hãy cho biết trong câu lạc bộ trên, nam giới hay nữ giới có tuổi đồng đều hơn.

Hoạt động khởi động trang 68 Toán 12 Tập 1

Biểu đồ dưới đây thống kê thời gian tập thể dục buổi sáng mỗi ngày trong tháng 9/2022 của bác Bình và bác An.

Ai là người có thời gian tập đều hơn?

Hoạt động khám phá 1 trang 68 Toán 12 Tập 1

Bảng sau thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch ở một nông trường.

Có ý kiến cho rằng: “Trong 50 quả xoài trên, hiệu số cân nặng của hai quả bất kì không vượt quá 200 g”. Ý kiến đó đúng hay sai? Giải thích.

Thực hành 1 trang 70 Toán 12 Tập 1

Bạn Trang thống kê lại chiều cao (đơn vị: cm) của các bạn học sinh nữ lớp 12C và lớp 12D ở bảng sau:

Sử dụng khoảng biến thiên, hãy cho biết chiều cao của học sinh nữ lớp nào có độ phân tán lớn hơn.

Hoạt động khám phá 2 trang 70 Toán 12 Tập 1

Kết quả điều tra tổng thu nhập trong năm 2022 của một số hộ gia đình trong một địa phương được ghi lại ở bảng sau:

a) Hãy tìm các tứ phân vị Q1 và Q3.

b) Một doanh nghiệp địa phương muốn hướng dịch vụ của mình đến các gia đình có mức thu nhập ở tầm trung, tức là 50% các hộ gia đình có mức thu nhập ở chính giữa so với mức thu nhập của tất cả các hộ gia đình của địa phương. Hỏi doanh nghiệp cần hướng đến các gia đình có mức thu nhập trong khoảng nào?

Thực hành 2 trang 72 Toán 12 Tập 1

Hãy so sánh khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng mỗi ngày của bác Bình và bác An trong Hoạt động khởi động.

Thực hành 3 trang 73 Toán 12 Tập 1

a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm ở Ví dụ 4 sau khi đã loại bỏ các giá trị ngoại lệ. Có nhận xét gì về khoảng biến thiên, khoảng tứ phân vị vừa tìm được và khoảng biến thiên, khoảng tứ phân vị ban đầu?

b) Hãy so sánh mức độ phân tán của hai mẫu số liệu chiều cao của các học sinh nữ lớp 12C và 12D ở Thực hành 1.

Vận dụng trang 73 Toán 12 Tập 1

Giả sử kết quả khảo sát hai khu vực A và B về độ tuổi kết hôn của một số phụ nữ vừa lập gia đình được cho ở bảng sau:

a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của từng mẫu số liệu ghép nhóm ứng với mỗi khu vực A và B.

b) Nếu so sánh theo khoảng tứ phân vị thì phụ nữ ở khu vực nào có độ tuổi kết hôn đồng đều hơn?

Giải bài tập SGK Toán 12 - Chân trời sáng tạo

Chương 1. Ứng dụng đạo hàm để khảo sát hàm số

Bài 1. Tính đơn điệu và cực trị của hàm số.

Bài 2. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số.

Bài 3. Đường tiệm cận của đồ thị hàm số.

Bài 4. Khảo sát và vẽ đồ thị một số hàm số cơ bản.

Bài tập cuối chương I.

Chương 2. Vectơ và hệ tọa độ trong không gian

Bài 1. Vectơ và các phép toán trong không gian.

Bài 2. Toạ độ của vectơ trong không gian.

Bài 3. Biểu thức toạ độ của các phép toán vectơ.

Bài tập cuối chương 2.

Chương 3. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm

Bài 1. Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm.

Bài 2. Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm.

Bài tập cuối chương 3.

Hoạt động thực hành và trải nghiệm

Bài 1. Vẽ đồ thị hàm số bằng phần mềm Geogebra 87.

Bài 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số bằng máy tính cầm tay 91.

Chương 4. Nguyên hàm. Tích phân.

Bài 1. Nguyên hàm.

Bài 2. Tích phân.

Bài 3. Ứng dụng hình học của tích phân.

Bài tập cuối chương 4.

Chương 5. Phương trình mặt phẳng, đường thẳng, mặt cầu

Bài 1. Phương trình mặt phẳng

Bài 2. Phương trình đường thẳng trong không gian

Bài 3. Phương trình mặt cầu

Bài tập cuối chương 5

Chương 6. Xác suất có điều kiện

Bài 1. Xác suất có điều kiện

Bài 2. Công thức xác suất toàn phần và công thức Bayes.

Bài tập cuối chương 6

Hoạt động thực hành và trải nghiệm

Bài 1. Tính giá trị gần đúng tích phân bằng máy tính cầm tay.

Bài 2. Minh hoạ và tính tích phân bằng phần mềm GeoGebra.

Bài 3. Sử dụng phần mềm GeoGebra để biểu diễn hình học toạ độ trong không gian.