Giải bài tập Hoạt động 2 trang 77 Toán 9 Tập 1: | Toán 9 - Cánh diều

Hướng dẫn giải chi tiết từng bước bài tập Hoạt động 2 trang 77 Toán 9 Tập 1:. Bài 1. Tỉ số lượng giác của góc nhọn.. Toán 9 - Cánh diều

Đề bài:

 Cho tam giác ABC vuông tại A (Hình 7).

a) Tổng số đo của góc B và góc C bằng bao nhiêu?

b) Viết công thức tính các tỉ số lượng giác của góc B và góc C.

c) Mỗi tỉ số lượng giác của góc B bằng tỉ số lượng giác nào góc C?

Đáp án và cách giải chi tiết:

a) Xét ∆ABC vuông tại A, ta có: 
(tổng hai góc nhọn của tam giác vuông bằng 90°).

b) Xét ∆ABC vuông tại A, theo định nghĩa tỉ số lượng giác, ta có:

⦁ sinB=ACBC;cosB=ABBC;tanB=ACAB;cotB=ABAC.

sinC=ABBC;cosC=ACBC;tanC=ABAC;cotC=ACAB.

c) Theo câu b, ta có: sinB = cosC; cosB = sinC; tanB = cotC; cotB = tanC.

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Khởi động trang 74 Toán 9 Tập 1:

Cho góc nhọn xBy^=α. Xét tam giác ABC vuông tại A, tam giác A’BC’ vuông tại A’ với A, A’ thuộc tia Bx và C, C’ thuộc tia By (Hình 1). Do ∆ABC ᔕ ∆A’BC’ nên

Như vậy, tỉ số giữa cạnh đối AC của góc nhọn α và cạnh huyền BC trong tam giác vuông ABC không phụ thuộc vào việc chọn tam giác vuông đó.

Tỉ số ACBC có mối liên hệ như thế nào với độ lớn góc α?

Hoạt động 1 trang 74 Toán 9 Tập 1:

Cho tam giác ABC vuông tại A có góc B = α

a) Cạnh góc vuông nào là cạnh đối của góc B?

b) Cạnh góc vuông nào là cạnh kề của góc B?

c) Cạnh nào là cạnh huyền?

Luyện tập 1 trang 77 Toán 9 Tập 1:

Cho tam giác MNP vuông tại M, MN = 3 cm, MP = 4 cm. Tính độ dài cạnh NP và các tỉ số lựợng giác của góc P.

 

Luyện tập 2 trang 78 Toán 9 Tập 1:

Tính:

a) sin61° – cos29°;

b) cos15° – sin75°;

c) tan28° – cot62°;

d) cot47° – tan43°.

Luyện tập 3 trang 78 Toán 9 Tập 1:

Sử dụng bảng tỉ số lượng giác của các góc nhọn đặc biệt, tính giá trị của biểu thức:

sin60° – cos60°.tan60°.

Hoạt động 3 trang 79 Toán 9 Tập 1:

Cùng với đơn vị đo góc là độ (kí hiệu: °), người ta còn sừ dụng những đơn vị đo góc khác là: phút (kí hiệu: ’), giây (kí hiệu: ”), với quy ước: 1° = 60’ ; 1’ = 60’’.

Ta có thể tính giá trị lượng giác (đúng hoặc gần đúng) của một góc nhọn bằng cách sử dụng các phím:  trên máy tính cầm tay. Trước hết, ta đưa máy tính về chế độ “độ”. Để nhập độ, phút giây, ta sử dụng phím .

Chẳng hạn, để tính sin35° và tan70°25’43’’, ta làm như sau:

Hoạt động 4 trang 79 Toán 9 Tập 1:

Sử dụng tính chất cotα = tan(90° – α), ta có thể tính được côtang của một góc nhọn. Chẳng hạn ta tính cot56° như sau:

Luyện tập 4 trang 79 Toán 9 Tập 1:

Sử dụng máy tính cầm tay để tính (gần đúng) các giá trị lượng giác sau: sin71°; cos48°; tan59°; cot23°.

Bài 1 trang 81 Toán 9 Tập 1:

Cho tam giác ABC vuông tại A có AC = 4 cm, BC = 6 cm. Tính các tỉ số lượng giác của góc B.

Bài 2 trang 81 Toán 9 Tập 1:

Cho tam giác ABC vuông tại A có AB = 2 cm, AC = 3 cm. Tính các tỉ số lượng giác của góc C.

Bài 3 trang 81 Toán 9 Tập 1:

Cho tam giác MNP có MN = 5 cm, MP = 12 cm, NP = 13 cm. Chứng minh tam giác MNP vuông tại M. Từ đó, tính các tỉ số lượng giác của góc N.

Bài 4 trang 81 Toán 9 Tập 1:

Mỗi tỉ số lượng giác sau đây bằng tỉ số lượng giác nào của góc 63°? Vì sao?

a) sin27°;

b) cos27°;

c) tan27°;

d) cot27°.

Bài 5 trang 81 Toán 9 Tập 1:

Sử dụng máy tính cầm tay để tính các tỉ số lượng giác của mỗi góc sau (làm tròn kết quả đến hàng phần trăm):

a) 41°;

b) 28°35’;

c) 70°27’46’’.

Bài 6 trang 81 Toán 9 Tập 1:

Sử dụng tỉ số lượng giác của hai góc phụ nhau, tính giác trị biểu thức:

A = sin25° + cos25° – sin65° – cos65°.

Bài 7 trang 81 Toán 9 Tập 1:

Cho góc nhọn α. Biết rằng, tam giác ABC vuông tại A sao cho góc B
=α.

a) Biểu diễn các tỉ số lượng giác của góc nhọn α theo AB, BC, CA.

b) Chứng minh:

sin2α+cos2α=1;tanα=sinαcosα;cotα=cosαsinα;tanαcotα=1.

Từ đó, tính giá trị biểu thức: S = sin235° + cos235°; T = tan61°.cot61°.

Bài 8 trang 81 Toán 9 Tập 1:

Hình 10 mô tả tia nắng mặt trời dọc theo AB tạo với phương nằm ngang trên mặt đất một góc α=ABH^. Sử dụng máy tính cầm tay, tính số đo góc α (làm tròn kết quả đến hàng đơn vị của độ) biết AH = 2 m, BH = 5 m.

Giải bài tập Toán 9 - Cánh diều

Chương 1: Phương trình và hệ phương trình bậc nhất

Bài 1. Phương trình quy về phương trình bậc nhất một ẩn.

Bài 2. Phương trình bậc nhất hai ẩn. Hệ hai phương trình bậc nhất hai ẩn.

Bài 3. Giải hệ hai phương trình bậc nhất hai ẩn.

Bài tập cuối chương 1

Chương 2. Bất đẳng thức. Bất phương trình bậc nhất một ẩn

Bài 1. Bất đẳng thức.

Bài 2. Bất phương trình bậc nhất một ẩn.

Bài tập cuối chương II.

HOẠT ĐỘNG THỰC HÀNH VÀ TRẢI NGHIỆM. Chủ đề 1. Làm quen với bảo hiểm.

Chương 3. Căn thức

Bài 1. Căn bậc hai và căn bậc ba của số thực

Bài 2. Một số phép tính về căn bậc hai của số thực.

Bài 3. Căn thức bậc hai và căn thức bậc ba của biểu thức đại số.

Bài 4. Một số phép biến đổi căn thức bậc hai của biểu thức đại số.

Bài tập cuối chương 3

Chương 4. Hệ thức lượng trong tam giác vuông

Bài 1. Tỉ số lượng giác của góc nhọn.

Bài 2. Một số hệ thức về cạnh và góc trong tam giác vuông.

Bài 3. Ứng dụng của tỉ số lượng giác của góc nhọn.

Bài tập cuối chương 4

Chương 5. Đường tròn

Bài 1. Đường tròn. Vị trí tương đối của hai đường tròn

Bài 2. Vị trí tương đối của đường thẳng và đường tròn

Bài 3. Tiếp tuyến của đường tròn

Bài 4. Góc ở tâm. Góc nội tiếp

Bài 5. Độ dài cung tròn, diện tích hình quạt tròn, diện tích hình vành khuyên

Bài tập cuối chương 5

Chương 6. Một số yếu tố thống kê và xác suất

Bài 1. Mô tả và biểu diễn dữ liệu trên các bảng, biểu đồ

Bài 2. Tần số. Tần số tương đối

Bài 3. Tần số ghép nhóm. Tần số tương đối ghép nhóm

Bài 4. Phép thử ngẫu nhiên và không gian mẫu. Xác suất của biến cố

Bài tập cuối chương 6

HOẠT ĐỘNG THỰC HÀNH VÀ TRẢI NGHIỆM. Chủ đề 2. Mật độ dân số.

Chương 7. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn

Bài 1. Hàm số y = ax² (a ≠ 0)

Bài 2. Phương trình bậc hai một ẩn.

Bài 3. Định lí Viète.

Bài tập cuối chương 7

Chương 8. Đường tròn ngoại tiếp và đường tròn nội tiếp

Bài 1. Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác

Bài 2. Tứ giác nội tiếp đường tròn

Bài tập cuối chương 8

Chương 9. Đa giác đều

Bài 1. Đa giác đều. Hình đa giác đều trong thực tiễn

Bài 2. Phép quay

Bài tập cuối chương 9

Chương 10. Hình học trực quan

Bài 1. Hình trụ

Bài 2. Hình nón

Bài 3. Hình cầu

Bài tập cuối chương 10

HOẠT ĐỘNG THỰC HÀNH VÀ TRẢI NGHIỆM. Chủ đề 3. Tạo đồ dùng dạng hình nón, hình trụ.