Giải bài tập Bài 9 trang 27 Toán 9 Tập 1: | Toán 9 - Cánh diều
Hướng dẫn giải chi tiết từng bước bài tập Bài 9 trang 27 Toán 9 Tập 1: . Bài tập cuối chương 1. Toán 9 - Cánh diều
Đề bài:
Trong một đợt khuyến mãi, siêu thị giảm giá cho mặt hàng A là 20% và mặt hàng B là 15% so với giá niêm yết. Một khách hàng mua 2 món hàng A và 1 món hàng B thì phải trả số tiền là 362 000 đồng. Nhưng nếu mua trong khung giờ vàng thì mặt hàng A được giảm giá 30% và mặt hàng B được giảm giá 25% so với giá niêm yết. Một khách hàng mua 3 món hàng A và 2 món hàng B trong khung giờ vàng nên phải trả số tiền là 552 000 đồng. Tính giá niêm yết của mỗi mặt hàng A và B.
Đáp án và cách giải chi tiết:
Gọi giá niêm yết của mặt hàng A và mặt hàng B lần lượt là x, y (đồng) (x > 0, y > 0).
Mặt hàng A sau khi giảm 20% giá niêm yết thì có giá là x.(100% – 20%) = x.80% = 0,8x (đồng).
Mặt hàng B sau khi giảm 15% giá niêm yết thì có giá là y.(100% – 15%) = y.85% = 0,85y (đồng).
Theo bài, khách hàng mua 2 món hàng A và 1 món hàng B thì phải trả số tiền là 362 000 đồng nên ta có phương trình:
2.0,8x + 0,85y = 362 000, hay 1,6x + 0,85y = 362 000.
Nếu mua trong khung giờ vàng:
⦁ mặt hàng A được giảm giá 30% so với giá niêm yết nên lúc này, mặt hàng A có giá là x.(100% – 30%) = x.70% = 0,7x (đồng).
⦁ mặt hàng B được giảm giá 25% so với giá niêm yết nên lúc này, mặt hàng B có giá là x.(100% – 25%) = x.75% = 0,75y (đồng).
Theo bài, khách hàng mua 3 món hàng A và 2 món hàng B trong khung giờ vàng trả số tiền là 552 000 đồng nên ta có phương trình:
3.0,7x + 2.0,75y = 552 000, hay 2,1x + 1,5y = 552 000.
Ta có hệ phương trình:
Nhân hai vế của phương trình thứ nhất với 210 và nhân hai vế của phương trình thứ hai với 160, ta được hệ phương trình sau:
Trừ từng vế của phương trình thứ hai cho phương trình thứ nhất, ta được phương trình:
61,5y = 12 300 000. (1)
Giải phương trình (1):
61,5y = 12 300 000
y = 200 000.
Thay y = 200 000 vào phương trình 1,6x + 0,85y = 362 000, ta được:
1,6x + 0,85 . 200 000 = 362 000. (2)
Giải phương trình (2):
1,6x + 0,85 . 200 000 = 362 000
1,6x + 170 000 = 362 000
1,6x = 192 000
x = 120 000.
Vậy giá niêm yết của mặt hàng A là 120 000 đồng và giá niêm yết của mặt hàng B là 200 000 đồng.
Nguồn: loigiaitoan.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Bài tập liên quan:
Bài 3 trang 26 Toán 9 Tập 1:
Giải các phương trình:
a) (3x + 7)(4x – 9) = 0;
b) (5x – 0,2)(0,3x + 6) = 0;
c) x(2x – 1) + 5(2x – 1) = 0;
d) x2 – 9 – (x + 3)(3x + 1) = 0;
e) x2 – 10x + 25 = 3(5 – x);
g) 4x2 = (x – 12)2.
Bài 6 trang 26 Toán 9 Tập 1:
Một nhóm bạn trẻ cùng tham gia khởi nghiệp và dự định góp vốn là 240 triệu đồng, số tiền mỗi người góp là như nhau. Nếu có thêm 2 người tham gia cùng thì số tiền mỗi người góp giảm đi 4 triệu đồng. Hỏi nhóm bạn trẻ đó có bao nhiêu người?
Bài 7 trang 26 Toán 9 Tập 1:
Một nhóm công nhân cần phải cắt cỏ ở một số mặt sân cỏ. Nếu nhóm công nhân đó sử dụng 3 máy cắt cỏ ngồi lái và 2 máy cắt cỏ đẩy tay trong 10 phút thì cắt được 2 990 m2 cỏ. Nếu nhóm công nhân đó sử dụng 4 máy cắt cỏ ngồi lái và 3 máy cắt cỏ đẩy tay trong 10 phút thì cắt được 4 060 m2 cỏ. Hỏi trong 10 phút, mỗi loại máy trên sẽ cắt được bao nhiêu mét vuông cỏ? Biết rằng năng suất của các máy cắt cỏ cùng loại là như nhau.
Bài 8 trang 27 Toán 9 Tập 1:
Tại một buổi biểu diễn nhằm gây quỹ từ thiện, ban tổ chức đã bán được 500 vé. Trong đó có hai loại vé: vé loại I giá 100 000 đồng; vé loại II giá 75 000 đồng. Tổng số tiền thu được từ bán vé là 44 500 000 đồng. Tính số vé bán ra của mỗi loại.
Bài 10 trang 27 Toán 9 Tập 1:
Trong phòng thí nghiệm, cô Linh muốn tạo ra 500 g dung dịch HCl 19% từ hai loại dung dịch HCl 10% và HCl 25%. Hỏi cô Linh cần dùng bao nhiêu gam mỗi loại dung dịch đó?
Bài 11 trang 27 Toán 9 Tập 1:
Một ca nô đi xuôi dòng từ địa điểm A đến địa điểm B, rồi lại đi ngược dòng từ địa điểm B trở về địa điểm A. Thời gian cả đi và về là 9 giờ. Tốc độ của ca nô khi nước yên lặng không đổi trên suốt quãng đường đó và tốc độ của dòng nước cũng không đổi khi ca nô chuyển động. Biết thời gian ca nô đi xuôi dòng 5 km bằng thời gian ca nô đi ngược dòng 4 km và quãng đường AB là 160 km. Tính tốc độ của ca nô khi nước yên lặng và tốc độ của dòng nước.