Giải bài tập Bài 3 trang 26 Toán 9 Tập 1: | Toán 9 - Cánh diều
Hướng dẫn giải chi tiết từng bước bài tập Bài 3 trang 26 Toán 9 Tập 1:. Bài tập cuối chương 1. Toán 9 - Cánh diều
Đề bài:
Giải các phương trình:
a) (3x + 7)(4x – 9) = 0;
b) (5x – 0,2)(0,3x + 6) = 0;
c) x(2x – 1) + 5(2x – 1) = 0;
d) x2 – 9 – (x + 3)(3x + 1) = 0;
e) x2 – 10x + 25 = 3(5 – x);
g) 4x2 = (x – 12)2.
Đáp án và cách giải chi tiết:
a) (3x + 7)(4x – 9) = 0.
Để giải được phương trình trên, ta giải hai phương trình sau:
3x + 7 = 0 3x = –7
|
4x – 9 = 0 4x = 9
|
Vậy phương trình đã cho có nghiệm là
b) (5x – 0,2)(0,3x + 6) = 0.
Để giải được phương trình trên, ta giải hai phương trình sau:
5x – 0,2 = 0 5x = 0,2 x = 0,04; |
0,3x + 6 = 0 0,3x = –6 x = –20. |
Vậy phương trình đã cho có nghiệm là x = 0,04 và x = –20.
c) x(2x – 1) + 5(2x – 1) = 0
(2x – 1)(x + 5) = 0.
Để giải được phương trình trên, ta giải hai phương trình sau:
2x – 1 = 0 2x = 1
|
x + 5 = 0 x = –5. |
d) x2 – 9 – (x + 3)(3x + 1) = 0
(x + 3)(x – 3) – (x + 3)(3x + 1) = 0
(x + 3)(x – 3 – 3x – 1) = 0
(x + 3)(–2x – 4) = 0.
Để giải được phương trình trên, ta giải hai phương trình sau:
x + 3 = 0 x = –3; |
–2x – 4 = 0 –2x = 4 x = –2. |
Vậy phương trình đã cho có nghiệm là x = –3 và x = –2.
e) x2 – 10x + 25 = 3(5 – x)
(x – 5)2 – 3(5 – x) = 0
(x – 5)2 + 3(x – 5) = 0
(x – 5)(x – 5 + 3) = 0
(x – 5)(x – 2) = 0.
Để giải được phương trình trên, ta giải hai phương trình sau:
x – 5 = 0 x = 5; |
x – 2 = 0 x = 2. |
Vậy phương trình đã cho có nghiệm là x = 5 và x = 2.
g) 4x2 = (x – 12)2
(2x)2 – (x – 12)2 = 0
(2x – x + 12)(2x + x – 12) = 0
(x + 12)(3x – 12) = 0.
Để giải được phương trình trên, ta giải hai phương trình sau:
x + 12 = 0 x = –12; |
3x – 12 = 0 3x = 12 x = 4. |
Vậy phương trình đã cho có nghiệm là x = –12 và x = 4.
Nguồn: loigiaitoan.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Bài tập liên quan:
Bài 6 trang 26 Toán 9 Tập 1:
Một nhóm bạn trẻ cùng tham gia khởi nghiệp và dự định góp vốn là 240 triệu đồng, số tiền mỗi người góp là như nhau. Nếu có thêm 2 người tham gia cùng thì số tiền mỗi người góp giảm đi 4 triệu đồng. Hỏi nhóm bạn trẻ đó có bao nhiêu người?
Bài 7 trang 26 Toán 9 Tập 1:
Một nhóm công nhân cần phải cắt cỏ ở một số mặt sân cỏ. Nếu nhóm công nhân đó sử dụng 3 máy cắt cỏ ngồi lái và 2 máy cắt cỏ đẩy tay trong 10 phút thì cắt được 2 990 m2 cỏ. Nếu nhóm công nhân đó sử dụng 4 máy cắt cỏ ngồi lái và 3 máy cắt cỏ đẩy tay trong 10 phút thì cắt được 4 060 m2 cỏ. Hỏi trong 10 phút, mỗi loại máy trên sẽ cắt được bao nhiêu mét vuông cỏ? Biết rằng năng suất của các máy cắt cỏ cùng loại là như nhau.
Bài 8 trang 27 Toán 9 Tập 1:
Tại một buổi biểu diễn nhằm gây quỹ từ thiện, ban tổ chức đã bán được 500 vé. Trong đó có hai loại vé: vé loại I giá 100 000 đồng; vé loại II giá 75 000 đồng. Tổng số tiền thu được từ bán vé là 44 500 000 đồng. Tính số vé bán ra của mỗi loại.
Bài 9 trang 27 Toán 9 Tập 1:
Trong một đợt khuyến mãi, siêu thị giảm giá cho mặt hàng A là 20% và mặt hàng B là 15% so với giá niêm yết. Một khách hàng mua 2 món hàng A và 1 món hàng B thì phải trả số tiền là 362 000 đồng. Nhưng nếu mua trong khung giờ vàng thì mặt hàng A được giảm giá 30% và mặt hàng B được giảm giá 25% so với giá niêm yết. Một khách hàng mua 3 món hàng A và 2 món hàng B trong khung giờ vàng nên phải trả số tiền là 552 000 đồng. Tính giá niêm yết của mỗi mặt hàng A và B.
Bài 10 trang 27 Toán 9 Tập 1:
Trong phòng thí nghiệm, cô Linh muốn tạo ra 500 g dung dịch HCl 19% từ hai loại dung dịch HCl 10% và HCl 25%. Hỏi cô Linh cần dùng bao nhiêu gam mỗi loại dung dịch đó?
Bài 11 trang 27 Toán 9 Tập 1:
Một ca nô đi xuôi dòng từ địa điểm A đến địa điểm B, rồi lại đi ngược dòng từ địa điểm B trở về địa điểm A. Thời gian cả đi và về là 9 giờ. Tốc độ của ca nô khi nước yên lặng không đổi trên suốt quãng đường đó và tốc độ của dòng nước cũng không đổi khi ca nô chuyển động. Biết thời gian ca nô đi xuôi dòng 5 km bằng thời gian ca nô đi ngược dòng 4 km và quãng đường AB là 160 km. Tính tốc độ của ca nô khi nước yên lặng và tốc độ của dòng nước.