Giải bài tập Bài 8 trang 117 Toán 11 Tập 2 | Toán 11 - Cánh diều
Hướng dẫn giải chi tiết từng bước bài tập Bài 8 trang 117 Toán 11 Tập 2. Bài tập cuối chương 8. Toán 11 - Cánh diều
Đề bài:
Đền Kukulcan (Hình 101) là một kim tự tháp Trung Mỹ nằm ở khu di tích Chichen Itza, Mexico, được người Maya xây vào khoảng từ thế kỉ IX đến thế kỉ XII. Phần thân của đền, không bao gồm ngôi đền nằm phía trên, có dạng một khối chóp cụt tứ giác đều (không tính cầu thang và coi các mặt bên là phẳng) với độ dài đáy dưới là 55,3 m, chiều cao là 24 m, góc giữa cạnh bên và mặt phẳng đáy là khoảng 47°.
(Nguồn: https://vi.wikipedia.org)
Tính thể tích phần thân của ngôi đền có dạng khối chóp cụt tứ giác đều đó theo đơn vị mét khối (làm tròn kết quả đến hàng phần trăm).
Đáp án và cách giải chi tiết:
Mô tả phần thân của đền Kukulcan trong bài toán bằng khối chóp cụt tứ giác đều ABCD.A’B’C’D’, với O và O’ lần lượt là tâm của hai đáy ABCD và A’B’C’D’.
Như vậy ta có:
⦁ ABCD là hình vuông cạnh 55,3 có diện tích SABCD = 55,32 = 3 058,09 (m2);
⦁ A’B’C’D’ là hình vuông;
⦁ Các cạnh bên A’A, B’B, C’C, D’D tạo với mặt đáy bằng 47°;
⦁ OO’ vuông góc với (ABCD) và (A’B’C’D’) và OO’ = 24 (m).
Do ABCD là hình vuông nên , do đó tam giác ABC vuông tại B.
Áp dụng định lí Pythagore vào tam giác ABC vuông tại B có:
AC2 = AB2 + BC2 = 55,32 + 55,32 = 2 . 55,32.
Suy ra
Do đó (do O là tâm hình vuông ABCD).
Dễ thấy: (ABCD) ∩ (A’C’CA) = AC;
(A’B’C’D’) ∩ (A’C’CA) = A’C’.
Mà (ABCD) // (A’B’C’D’).
Suy ra AC // A’C’ hay A’C’CA là hình thang.
Xét hình thang A’C’CA, kẻ C’H ⊥ AC (H ∈ AC).
Vì OO’ ⊥ (ABCD) và AC ⊂ (ABCD) nên OO’ ⊥ AC.
Do đó C’H // OO’ (cùng vuông góc với AC).
Mà O’C’ // OH (do A’C’ // AC)
Suy ra O’C’HO là hình bình hành.
Do đó: C’H = OO’ = 24 (m) và OH = O’C’.
Vì OO’ ⊥ (ABCD) và OO’ // C’H nên C’H ⊥ (ABCD).
Suy ra CH là hình chiếu của CC’ trên (ABCD).
Khi đó, góc giữa cạnh bên CC’ và mặt phẳng đáy bằng
Xét tam giác C’HC vuông tại H (do C’H ⊥ AC) có:
Suy ra
Suy ra O’C’ = OH = OC – HC ≈ 39,1 – 22,38 = 16,72.
Ta có A’C’ = 2O’C ≈ 2.16,72 = 33,44 (do O’ là tâm hình vuông A’B’C’D’).
Vì A’B’C’D’ là hình vuông nên và A’B’ = B’C’.
Suy ra tam giác A’B’C’ vuông cân tại B’.
Áp dụng định lí Pythagore trong tam giác A’B’C’ vuông cân tại B’ có:
A’B’2 + B’C’2 = A’C’2 hay 2A’B’2 = A’C’2
Suy ra
Diện tích hình vuông A’B’C’D’ cạnh 23,65 là: S A’B’C’D’ ≈ 23,652 = 559,3225 (m2).
Như vậy, thể tích khối chóp cụt tứ giác đều ABCD.A’B’C’D’ với chiều cao OO’ = 24 và diện tích hai đáy SABCD = 3 058,09; SA’B’C’D’ = 559,3225 là:
Vậy thể tích phần thân ngôi đền đã cho gần bằng 39 402,06 m3.
Nguồn: loigiaitoan.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Bài tập liên quan:
Bài 1 trang 116 Toán 11 Tập 2
Cho hình lập phương MNPQ.M’N’P’Q’ có cạnh bằng a.
a) Góc giữa hai đường thẳng MN và M’P’ bằng:
A. 30°;
B. 45°;
C. 60°;
D. 90°.
b) Gọi α là số đo góc giữa đường thẳng M’P và mặt phẳng (MNPQ). Giá trị tanα bằng:
A. 1;
B. 2;
C. ;
D. .
c) Số đo của góc nhị diện [N, MM’, P] bằng:
A. 30°;
B. 45°;
C. 60°;
D. 90°.
d) Khoảng cách từ điểm M đến mặt phẳng (NQQ’N’) bằng:
A. a;
B. ;
C.
D. .
Bài 2 trang 116 Toán 11 Tập 2
Cho hình hộp chữ nhật MNPQ.M’N’P’Q’ có MN = 2a, MQ = 3a, MM’ = 4a. Khoảng cách giữa hai đường thẳng NP và M’N’ bằng:
A. 2a;
B. 3a;
C. 4a;
D. 5a.
Bài 3 trang 116 Toán 11 Tập 2
Cho khối lăng trụ có diện tích đáy bằng a2 và chiều cao bằng 3a. Thể tích của khối lăng trụ đó bằng:
A. a3;
B. 3a3;
C. ;
D. 9a3.
Bài 4 trang 116 Toán 11 Tập 2
Cho khối chóp có diện tích đáy là a2 và chiều cao là 3a. Thể tích của khối chóp bằng:
A. a3;
B. 3a3;
C. ;
D. 9a3.
Bài 5 trang 116 Toán 11 Tập 2
Cho tứ diện OABC thỏa mãn OA = a, OB = b, OC = c, . Thể tích của khối tứ diện OABC bằng:
A. abc;
B. ;
C. ;
D. .
Bài 6 trang 116 Toán 11 Tập 2
Cho hình chóp S.ABC có SA ⊥ (ABC), AC ⊥ BC, , AC = a (Hình 99).
a) Tính góc giữa hai đường thẳng SA và BC.
b) Tính góc giữa đường thẳng SC và mặt phẳng (ABC).
c) Tính số đo của góc nhị diện [B, SA, C].
d) Tính khoảng cách từ B đến mặt phẳng (SAC).
e) Tính khoảng cách giữa hai đường thẳng SA và BC.
g) Tính thể tích của khối chóp S.ABC.
Bài 7 trang 117 Toán 11 Tập 2
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có tất cả các cạnh bằng a. Gọi M là trung điểm của AB (Hình 100).
a) Tính góc giữa hai đường thẳng AB và B’C’.
b) Tính góc giữa đường thẳng A’B và mặt phẳng (ABC).
c) Tính số đo của góc nhị diện [B, CC’, M].
d) Chứng minh rằng CC’ // (ABB’A’). Tính khoảng cách giữa đường thẳng CC’ và mặt phẳng (ABB’A’).
e) Chứng minh rằng CM ⊥ (ABB’A’). Tính khoảng cách giữa hai đường thẳng CC’ và A’M.
g) Tính thể tích của khối lăng trụ tam giác đều ABC.A’B’C’ và thể tích khối chóp A’.MBC.