Giải bài tập Bài 6 trang 116 Toán 11 Tập 2 | Toán 11 - Cánh diều

Hướng dẫn giải chi tiết từng bước bài tập Bài 6 trang 116 Toán 11 Tập 2. Bài tập cuối chương 8. Toán 11 - Cánh diều

Đề bài:

Cho hình chóp S.ABC có SA ⊥ (ABC), AC ⊥ BC, SA=BC=a3, AC = a (Hình 99).

a) Tính góc giữa hai đường thẳng SA và BC.

b) Tính góc giữa đường thẳng SC và mặt phẳng (ABC).

c) Tính số đo của góc nhị diện [B, SA, C].

d) Tính khoảng cách từ B đến mặt phẳng (SAC).

e) Tính khoảng cách giữa hai đường thẳng SA và BC.

g) Tính thể tích của khối chóp S.ABC.

Đáp án và cách giải chi tiết:

a) Do SA ⊥ (ABC) và BC ⊂ (ABC) nên SA ⊥ BC.

Vậy góc giữa hai đường thẳng SA và BC bằng 90°.

b) Vì SA ⊥ (ABC) nên AC là hình chiếu của SC trên (ABC).

Suy ra góc giữa đường thẳng SC và mặt phẳng (ABC) bằng SCA^

Do SA ⊥ (ABC) và AC ⊂ (ABC) nên SA ⊥ AC.

Xét tam giác SAC vuông tại A (do SA ⊥ AC) có:

tanSCA^=SAAC=a3a=3SCA^=60°

Vậy góc giữa đường thẳng SC và mặt phẳng (ABC) bằng 60°.

c) Do SA ⊥ (ABC) và AB, AC đều nằm trên (ABC).

Suy ra SA ⊥ AB, SA ⊥ AC.

Mà AB ∩ AC = A ∈ SA.

Như vậy, BAC^ là góc phẳng nhị diện của góc nhị diện [B, SA, C].

Xét tam giác ABC vuông tại C (do AC ⊥ BC) có:

tanBAC^=BCAC=a3a=3BAC^=60°

Vậy số đo của góc nhị diện [B, SA, C] bằng 60°.

d) Ta có: BC ⊥ SA (theo câu a);

               BC ⊥ AC;

               SA ∩ AC = A trong (SAC).

Suy ra BC ⊥ (SAC).

Khi đó dB, SAC=BC=a3

Vậy khoảng cách từ B đến mặt phẳng (SAC) bằng a3

e) Ta có: AC ⊥ SA (theo câu c) và AC ⊥ BC.

Suy ra đoạn thẳng AC là đoạn vuông góc chung của hai đường thẳng SA và BC.

Khi đó d(SA, BC) = AC = a.

Vậy khoảng cách giữa hai đường thẳng SA và BC bằng a.

g) Diện tích tam giác ABC vuông tại C (do AC ⊥ BC) là:

SABC=12AC.BC=12a.a3=a232

Thể tích của khối chóp S.ABC có chiều cao SA=a3 và diện tích đáy SABC=a232

VS.ABC=13.SABC.SA=13.a232.a3=a32

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Bài 1 trang 116 Toán 11 Tập 2

Cho hình lập phương MNPQ.M’N’P’Q’ có cạnh bằng a.

a) Góc giữa hai đường thẳng MN và M’P’ bằng:

A. 30°;

B. 45°;

C. 60°;

D. 90°.

b) Gọi α là số đo góc giữa đường thẳng M’P và mặt phẳng (MNPQ). Giá trị tanα bằng:

A. 1;

B. 2;

C. 2;

D. 12.

c) Số đo của góc nhị diện [N, MM’, P] bằng:

A. 30°;

B. 45°;

C. 60°;

D. 90°.

d) Khoảng cách từ điểm M đến mặt phẳng (NQQ’N’) bằng:

A. a;

B. a2;

C. a2

D. a2.

Bài 2 trang 116 Toán 11 Tập 2

Cho hình hộp chữ nhật MNPQ.M’N’P’Q’ có MN = 2a, MQ = 3a, MM’ = 4a. Khoảng cách giữa hai đường thẳng NP và M’N’ bằng:

A. 2a;

B. 3a;

C. 4a;

D. 5a.

Bài 3 trang 116 Toán 11 Tập 2

Cho khối lăng trụ có diện tích đáy bằng a2 và chiều cao bằng 3a. Thể tích của khối lăng trụ đó bằng:

A. a3;

B. 3a3;

C. a33;

D. 9a3.

Bài 4 trang 116 Toán 11 Tập 2

Cho khối chóp có diện tích đáy là a2 và chiều cao là 3a. Thể tích của khối chóp bằng:

A. a3;

B. 3a3;

C. a33;

D. 9a3.

Bài 5 trang 116 Toán 11 Tập 2

Cho tứ diện OABC thỏa mãn OA = a, OB = b, OC = c, AOB^=BOC^=COA^=90°. Thể tích của khối tứ diện OABC bằng:

A. abc;

B. abc2;

C. abc3;

D. abc6.

Bài 7 trang 117 Toán 11 Tập 2

Cho hình lăng trụ tam giác đều ABC.A’B’C’ có tất cả các cạnh bằng a. Gọi M là trung điểm của AB (Hình 100).

a) Tính góc giữa hai đường thẳng AB và B’C’.

b) Tính góc giữa đường thẳng A’B và mặt phẳng (ABC).

c) Tính số đo của góc nhị diện [B, CC’, M].

d) Chứng minh rằng CC’ // (ABB’A’). Tính khoảng cách giữa đường thẳng CC’ và mặt phẳng (ABB’A’).

e) Chứng minh rằng CM ⊥ (ABB’A’). Tính khoảng cách giữa hai đường thẳng CC’ và A’M.

g) Tính thể tích của khối lăng trụ tam giác đều ABC.A’B’C’ và thể tích khối chóp A’.MBC.

Bài 8 trang 117 Toán 11 Tập 2

Đền Kukulcan (Hình 101) là một kim tự tháp Trung Mỹ nằm ở khu di tích Chichen Itza, Mexico, được người Maya xây vào khoảng từ thế kỉ IX đến thế kỉ XII. Phần thân của đền, không bao gồm ngôi đền nằm phía trên, có dạng một khối chóp cụt tứ giác đều (không tính cầu thang và coi các mặt bên là phẳng) với độ dài đáy dưới là 55,3 m, chiều cao là 24 m, góc giữa cạnh bên và mặt phẳng đáy là khoảng 47°.

(Nguồn: https://vi.wikipedia.org)

Tính thể tích phần thân của ngôi đền có dạng khối chóp cụt tứ giác đều đó theo đơn vị mét khối (làm tròn kết quả đến hàng phần trăm).

Giải bài tập Toán 11 - Cánh diều

Chương 1: Hàm số lượng giác và phương trình lượng giác

Bài 1: Góc lượng giác. Giá trị lượng giác của góc lượng giác

Bài 2: Các phép biến đổi lượng giác

Bài 3: Hàm số lượng giác và đồ thị

Bài 4: Phương trình lượng giác cơ bản

Bài tập cuối chương 1

Chương 2: Dãy số. Cấp số cộng. Cấp số nhân

Bài 1: Dãy số

Bài 2: Cấp số cộng

Bài 3: Cấp số nhân

Bài tập cuối chương 2

Chương 3: Giới hạn. Hàm số liên tục

Bài 1: Giới hạn của dãy số

Bài 2: Giới hạn của hàm số

Bài 3: Hàm số liên tục

Bài tập cuối chương 3

Hoạt động thực hành và trải nghiệm - Tập 1

Chủ đề 1: Một số hình thức đầu tư tài chính

Chương 4: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song

Bài 1: Đường thẳng và mặt phẳng trong không gian

Bài 2: Hai đường thẳng song song trong không gian

Bài 3: Đường thẳng và mặt phẳng song song

Bài 4: Hai mặt phẳng song song

Bài 5: Hình lăng trụ và hình hộp

Bài 6: Phép chiếu song song. Hình biểu diễn của một hình không gian

Bài tập cuối chương 4

Chương 5: Một số yếu tố thống kê và xác suất

Bài 1: Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm

Bài 2: Biến cố hợp và biến cố giao. Biến cố độc lập. Các quy tắc tính xác suất

Bài tập cuối chương 5

Chương 6: Hàm số mũ và hàm số lôgarit

Bài 1: Phép tính lũy thừa với số mũ thực

Bài 2: Phép tính lôgarit

Bài 3: Hàm số mũ. Hàm số lôgarit

Bài 4: Phương trình, bất phương trình mũ và lôgarit

Bài tập cuối chương 6

Chương 7: Đạo hàm

Bài 1: Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm

Bài 2: Các quy tắc tính đạo hàm

Bài 3: Đạo hàm cấp hai

Bài tập cuối chương 7

Chương 8: Quan hệ vuông góc trong không gian. Phép chiếu vuông góc

Bài 1: Hai đường thẳng vuông góc

Bài 2: Đường thẳng vuông góc với mặt phẳng

Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện

Bài 4: Hai mặt phẳng vuông góc

Bài 5: Khoảng cách

Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối

Bài tập cuối chương 8

Hoạt động thực hành và trải nghiệm - Tập 2

Chủ đề 2: Tính thể tích một số hình khối trong thực tiễn