Giải bài tập Mở đầu trang 111 Toán 11 Tập 1 | Toán 11 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Mở đầu trang 111 Toán 11 Tập 1. Bài 16: Giới hạn của hàm số. Toán 11 - Kết nối tri thức

Đề bài:

Trong Thuyết tương đối của Einstein, khối lượng của vật chuyển động với vận tốc v cho bởi công thức m = m01-v2c2, trong đó m0 là khối lượng của vật khi nó đứng yên, c là vận tốc ánh sáng. Chuyện gì xảy ra với khối lượng của vật khi vận tốc của vật gần với vận tốc ánh sáng?

Đáp án và cách giải chi tiết:

Sau bài học này ta sẽ giải quyết được bài toán trên như sau:

Từ công thức khối lượng m = m01-v2c2.

ta thấy m là một hàm số của v, với tập xác định là nửa khoảng [0; c). Rõ ràng khi v tiến gần tới vận tốc ánh sáng, tức là v ⟶ c, ta có 1-v2c20. Do đó limvc-mv=+, nghĩa là khối lượng m của vật trở nên vô cùng lớn khi vận tốc của vật gần tới vận tốc ánh sáng.

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Bài 5.7 trang 118 Toán 11 Tập 1

Cho hai hàm số 

a) f(x) = g(x);

b) limx1f(x)=limx1g(x).

Bài 5.8 trang 118 Toán 11 Tập 1

Tính các giới hạn sau:

a) limx0x+22-4x;

b) limx0x2+9-3x2.

Bài 5.9 trang 118 Toán 11 Tập 1

Cho hàm số Bài 5.9 trang 118 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11 (hàm Heaviside, thường được dùng để mô tả việc chuyển trạng thái tắt/mở của dòng điện tại thời điểm t = 0).

Tính lim𝑡0+𝐻𝑡 và lim𝑡0𝐻𝑡.

Bài 5.10 trang 118 Toán 11 Tập 1

Tính các giới hạn một bên:

a) limx1+x-2x-1;

b) limx4-x2-x+14-x.

Bài 5.11 trang 118 Toán 11 Tập 1

Cho hàm số Bài 5.11 trang 118 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11.

Tìm limx2+gx  limx2-gx

Bài 5.12 trang 118 Toán 11 Tập 1

Tính các giới hạn sau:

a) limx+1-2xx2+1;

b) limx+x2+x+2-x.

Bài 5.13 trang 118 Toán 11 Tập 1

Cho hàm số fx=2x-1x-2.

Tính limx2+fxlimx2-fx.

HĐ1 trang 111 Toán 11 Tập 1

Nhận biết khái niệm giới hạn tại một điểm

Cho hàm số f(x) = 4-x2x-2.

a) Tìm tập xác định của hàm số f(x).

b) Cho dãy số xn=2n+1n. Rút gọn f(xn) và tính giới hạn của dãy (un) với un = f(xn).

c) Với dãy số (xn) bất kì sao cho xn ≠ 2 và xn ⟶ 2, tính f(xn) và tìm limn+fxn.

HĐ2 trang 113 Toán 11 Tập 1

Nhận biết khái niệm giới hạn một bên

Cho hàm số HĐ2 trang 113 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11.

a) Cho xn1-1n+1 và x'n1+1n. Tính yn = f(xn) và y'n = f(x'n).

b) Tìm giới hạn của các dãy số (yn) và (y'n).

c) Cho các dãy số (xn) và (x'n) bất kì sao cho xn < 1 < x'n và xn ⟶ 1, x'n ⟶ 1, tính limn+fxn và limn+fx'n.

Luyện tập 2 trang 113 Toán 11 Tập 1

Cho hàm số

Tính limx0+fx; limx0-fx; limx0fx.

HĐ3 trang 114 Toán 11 Tập 1

Nhận biết khái niệm giới hạn tại vô cực

Cho hàm số f(x) = 1 + 2x-1 có đồ thị như Hình 5.4.

Giả sử (xn) là dãy số sao cho xn > 1, xn ⟶ +∞. Tính f(xn) và tìm limn+fxn.

Vận dụng trang 115 Toán 11 Tập 1

Cho tam giác vuông OAB với A = (a; 0) và B = (0; 1) như Hình 5.5. Đường cao OH có độ dài là h.

a) Tính h theo a.

b) Khi điểm A dịch chuyển về O, điểm H thay đổi thế nào? Tại sao?

c) Khi A dịch chuyển ra vô cực theo chiều dương của trục Ox, điểm H thay đổi thế nào? Tại sao?

HĐ4 trang 115 Toán 11 Tập 1

Nhận biết khái niệm giới hạn vô cực

Xét hàm số  f(x) = 1x2 có đồ thị như Hình 5.6.

Cho xn=1n, chứng tỏ rằng f(xn) ⟶ +∞.

HĐ5 trang 116 Toán 11 Tập 1

Cho hàm số f(x) = 1x-1. Với các dãy số (xn) và (x'n) cho bởi xn = 1 + 1n, x'n = 1 - 1n, tính limn+fxn và limn+fx'n.

Luyện tập 4 trang 116 Toán 11 Tập 1

Tính các giới hạn sau:

a) Luyện tập 4 trang 116 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11;

b) limx2-12-x.

Giải bài tập Toán 11 - Kết nối tri thức

Chương 1: Hàm số lượng giác và phương trình lượng giác

Bài 1: Giá trị lượng giác của góc lượng giác

Bài 2: Công thức lượng giác

Bài 3: Hàm số lượng giác

Bài 4: Phương trình lượng giác cơ bản

Bài tập cuối chương 1

Chương 2: Dãy số. Cấp số cộng và cấp số nhân

Bài 5: Dãy số

Bài 6: Cấp số cộng

Bài 7: Cấp số nhân

Bài tập cuối chương 2

Chương 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu ghép nhóm

Bài 8: Mẫu số liệu ghép nhóm

Bài 9: Các số đặc trưng đo xu thế trung tâm

Bài tập cuối chương 3

Chương 4: Quan hệ song song trong không gian

Bài 10: Đường thẳng và mặt phẳng trong không gian

Bài 11: Hai đường thẳng song song

Bài 12: Đường thẳng và mặt phẳng song song

Bài 13: Hai mặt phẳng song song

Bài 14: Phép chiếu song song

Bài tập cuối chương 4

Chương 5: Giới hạn. Hàm số liên tục

Bài 15: Giới hạn của dãy số

Bài 16: Giới hạn của hàm số

Bài 17: Hàm số liên tục

Bài tập cuối chương 5

Hoạt động thực hành trải nghiệm - Tập 1

Một vài áp dụng của toán học trong tài chính

Lực căng mặt ngoài của nước

Hoạt động thực hành trải nghiệm - Tập 2

Một vài mô hình toán học sử dụng hàm số mũ và hàm số lôgarit

Hoạt động thực hành trải nghiệm Hình học

Chương 6: Hàm số mũ và hàm số lôgarit

Bài 18: Lũy thừa với số mũ thực

Bài 19: Lôgarit

Bài 20: Hàm số mũ và hàm số lôgarit

Bài 21: Phương trình, bất phương trình mũ và lôgarit

Bài tập cuối chương 6

Chương 7: Quan hệ vuông góc trong không gian

Bài 22: Hai đường thẳng vuông góc

Bài 23: Đường thẳng vuông góc với mặt phẳng

Bài 24: Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng

Bài 25: Hai mặt phẳng vuông góc

Bài 26: Khoảng cách

Bài 27: Thể tích

Bài tập cuối chương 7

Chương 8: Các quy tắc tính xác suất

Bài 28: Biến cố hợp, biến cố giao, biến cố độc lập

Bài 29: Công thức cộng xác suất

Bài 30: Công thức nhân xác suất cho hai biến cố độc lập

Bài tập cuối chương 8

Chương 9: Đạo hàm

Bài 31: Định nghĩa và ý nghĩa của đạo hàm

Bài 32: Các quy tắc tính đạo hàm

Bài 33: Đạo hàm cấp hai

Bài tập cuối chương 9