Giải bài tập Bài 7 trang 60 Toán 9 Tập 1: | Toán 9 - Cánh diều

Hướng dẫn giải chi tiết từng bước bài tập Bài 7 trang 60 Toán 9 Tập 1: . Bài 2. Một số phép tính về căn bậc hai của số thực.. Toán 9 - Cánh diều

Đề bài:

Cho tam giác đều ABC có độ dài cạnh là a. Tính độ dài đường cao AH của tam giác ABC theo a.

Đáp án và cách giải chi tiết:

Xét ∆ABC đều có AH là đường cao nên đồng thời là đường trung tuyến của tam giác, do đó H là trung điểm của BC.

Suy ra HC = BC2=a2.

 

Xét ∆AHC vuông tại H, theo định lí Pythagore, ta có:

AC2 = AH2 + HC2

Suy ra AH2 = AC2 - HC2 = a2a22=a2a24=3a24.

Do đó AH = 3a24=3a24 = Bài 7 trang 60 Toán 9 Tập 1 Cánh diều | Giải Toán 9 = a32(vì a > 0).

Vậy độ dài đường cao AH của tam giác ABC là a32.

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Khởi động trang 55 Toán 9 Tập 1:

Khi một quả bóng rổ được thả xuống, nó sẽ nảy trở lại, nhưng do tiêu hao năng lượng nên nó không đạt được chiều cao như lúc bắt đầu. Hệ số phục hồi của quả bóng rổ được tính theo công thức CR=hH, trong đó H là độ cao mà quả bóng được thả rơi và h là độ cao mà quả bóng bật lại.

(Nguồn: Math for Real Life: Teaching Practical Uses for Algebra, Geometry and Trigonometry, Jim Libby, năm 2017)

Một quả bóng rổ rơi từ độ cao 3,24 m và bật lại độ cao 2,25 m. Làm thế nào để viết hệ số phục hồi của quả bóng đó dưới dạng phân số?

Luyện tập 1 trang 55 Toán 9 Tập 1:

Áp dụng quy tắc về căn bậc hai của một bình phương, hãy tính:

a) 352;

b)

c)

Luyện tập 2 trang 56 Toán 9 Tập 1:

Áp dụng quy tắc về căn bậc hai của một tích, hãy tính:

a) 25121;

b) 298;

c) 105,252.

Luyện tập 3 trang 57 Toán 9 Tập 1:

Trong tình huống nêu ra ở phần mở đầu, viết hệ số phục hồi của quả bóng rổ dưới dạng phân số.

Hoạt động 4 trang 57 Toán 9 Tập 1:

So sánh:

a) 3211 và 311;

b) (-5)22 và 

Hoạt động 5 trang 58 Toán 9 Tập 1:

So sánh:

a) 35 và 325;

b) -52 và  (-5)22.

Bài 1 trang 59 Toán 9 Tập 1:

Áp dụng quy tắc về căn bậc hai của một bình phương, hãy tính:

a) 252;

b) 0,162;

c) 

Bài 2 trang 59 Toán 9 Tập 1:

Áp dụng quy tắc về căn bậc hai của một tích, hãy tính:

a) 3681;

b) 49121169;

c) 502142

d) 

Bài 3 trang 59 Toán 9 Tập 1:

Áp dụng quy tắc về căn bậc hai của một thương, hãy tính:

Bài 4 trang 59 Toán 9 Tập 1:

Áp dụng quy tắc đưa thừa số ra ngoài dấu căn bậc hai, hãy rút gọn biểu thức:

a) 1227+75;

b) 28025320;

c)

Bài 5 trang 59 Toán 9 Tập 1:

Áp dụng quy tắc đưa thừa số vào trong dấu căn bậc hai, hãy rút gọn biểu thức:

a) 92932;

b)

Bài 6 trang 60 Toán 9 Tập 1:

So sánh:

a)37 và 22;

b) 522 và 5;

c) 37 và 65.

Bài 8 trang 60 Toán 9 Tập 1:

Trong Vật lí, ta có định luật Joule – Lenz để tính nhiệt lượng toả ra ở dây dẫn khi có dòng điện chạy qua:

Q = I2Rt.

Trong đó: Q là nhiệt lượng toả ra trên dây dẫn tính theo Jun (J);

I là cường độ dòng điện chạy trong dây dẫn tính theo Ampe (A);

R là điện trở dây dẫn tính theo Ohm (Ω);

t là thời gian dòng điện chạy qua dây dẫn tính theo giây.

Áp dụng công thức trên để giải bài toán sau: Một bếp điện khi hoạt động bình thường có điện trở R = 80 Ω. Tính cường độ dòng điện chạy trong dây dẫn, biết nhiệt lượng mà dây dẫn toả ra trong 1 giây là 500 J.

Bài 9 trang 60 Toán 9 Tập 1:

Tốc độ gần đúng của một ô tô ngay trước khi đạp phanh được tính theo công thức v = 2λgd, trong đó v (m/s) là tốc độ của ô tô, d (m) là chiều dài của vết trượt tính từ thời điểm đạp phanh cho đến khi ô tô dừng lại trên đường, λ là hệ số cản lăn của mặt đường, g = 9,8 m/s2 (Nguồn: Math for Real Life: Teaching Practical Uses for Algebra, Geometry and Trigonometry, Jim Libby, năm 2017). Nếu một chiếc ô tô để lại vết trượt dài khoảng 20 m trên đường nhựa thì tốc độ của ô tô trước khi đạp phanh là khoảng bao nhiêu mét trên giây (làm tròn kết quả đến hàng đơn vị)? Biết rằng hệ số cản lăn của đường nhựa là λ 0,7.

Giải bài tập Toán 9 - Cánh diều

Chương 1: Phương trình và hệ phương trình bậc nhất

Bài 1. Phương trình quy về phương trình bậc nhất một ẩn.

Bài 2. Phương trình bậc nhất hai ẩn. Hệ hai phương trình bậc nhất hai ẩn.

Bài 3. Giải hệ hai phương trình bậc nhất hai ẩn.

Bài tập cuối chương 1

Chương 2. Bất đẳng thức. Bất phương trình bậc nhất một ẩn

Bài 1. Bất đẳng thức.

Bài 2. Bất phương trình bậc nhất một ẩn.

Bài tập cuối chương II.

HOẠT ĐỘNG THỰC HÀNH VÀ TRẢI NGHIỆM. Chủ đề 1. Làm quen với bảo hiểm.

Chương 3. Căn thức

Bài 1. Căn bậc hai và căn bậc ba của số thực

Bài 2. Một số phép tính về căn bậc hai của số thực.

Bài 3. Căn thức bậc hai và căn thức bậc ba của biểu thức đại số.

Bài 4. Một số phép biến đổi căn thức bậc hai của biểu thức đại số.

Bài tập cuối chương 3

Chương 4. Hệ thức lượng trong tam giác vuông

Bài 1. Tỉ số lượng giác của góc nhọn.

Bài 2. Một số hệ thức về cạnh và góc trong tam giác vuông.

Bài 3. Ứng dụng của tỉ số lượng giác của góc nhọn.

Bài tập cuối chương 4

Chương 5. Đường tròn

Bài 1. Đường tròn. Vị trí tương đối của hai đường tròn

Bài 2. Vị trí tương đối của đường thẳng và đường tròn

Bài 3. Tiếp tuyến của đường tròn

Bài 4. Góc ở tâm. Góc nội tiếp

Bài 5. Độ dài cung tròn, diện tích hình quạt tròn, diện tích hình vành khuyên

Bài tập cuối chương 5

Chương 6. Một số yếu tố thống kê và xác suất

Bài 1. Mô tả và biểu diễn dữ liệu trên các bảng, biểu đồ

Bài 2. Tần số. Tần số tương đối

Bài 3. Tần số ghép nhóm. Tần số tương đối ghép nhóm

Bài 4. Phép thử ngẫu nhiên và không gian mẫu. Xác suất của biến cố

Bài tập cuối chương 6

HOẠT ĐỘNG THỰC HÀNH VÀ TRẢI NGHIỆM. Chủ đề 2. Mật độ dân số.

Chương 7. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn

Bài 1. Hàm số y = ax² (a ≠ 0)

Bài 2. Phương trình bậc hai một ẩn.

Bài 3. Định lí Viète.

Bài tập cuối chương 7

Chương 8. Đường tròn ngoại tiếp và đường tròn nội tiếp

Bài 1. Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác

Bài 2. Tứ giác nội tiếp đường tròn

Bài tập cuối chương 8

Chương 9. Đa giác đều

Bài 1. Đa giác đều. Hình đa giác đều trong thực tiễn

Bài 2. Phép quay

Bài tập cuối chương 9

Chương 10. Hình học trực quan

Bài 1. Hình trụ

Bài 2. Hình nón

Bài 3. Hình cầu

Bài tập cuối chương 10

HOẠT ĐỘNG THỰC HÀNH VÀ TRẢI NGHIỆM. Chủ đề 3. Tạo đồ dùng dạng hình nón, hình trụ.