Giải bài tập Bài 1.23 trang 32 Toán 12 Tập 1 | SGK Toán 12 - Kết nối tri thức
Hướng dẫn giải chi tiết từng bước bài tập Bài 1.23 trang 32 Toán 12 Tập 1. Bài 4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số.. SGK Toán 12 - Kết nối tri thức
Đề bài:
Bài 1.23 trang 32 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a)
b)
Đáp án và cách giải chi tiết:
a)
1. Tập xác định của hàm số là ℝ\{1}.
2. Sự biến thiên
Có
+) Có
+) Trên các khoảng , có y' > 0 nên hàm số đồng biến trên từng khoảng này.
Trên các khoảng , có y' < 0 nên hàm số nghịch biến trên khoảng này.
+) Hàm số đạt cực cực đại tại và đạt cực tiểu tại
+)
+) Tiệm cận
Do đó x = 1 là tiệm cận đứng của đồ thị hàm số và y = 2x +1 là tiệm cận xiên của đồ thị hàm số.
+) Bảng biến thiên
3. Đồ thị
+) Giao điểm của đồ thị hàm số với trục tung là (0; −4).
+) Đồ thị hàm số không cắt trục hoành.
+) Đồ thị hàm số nhận giao điểm I(1; 3) của hai đường tiệm cận làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận này làm các trục đối xứng.
b)
1. Tập xác định của hàm số là ℝ\{−3}.
2. Sự biến thiên
Có
+) Có
+) Trên các khoảng (−∞; −5) và (−1; +∞), y' > 0 nên hàm số đồng biến trên các khoảng này.
Trên các khoảng (−5; −3) và (−3; −1), y' < 0 nên hàm số nghịch biến trên các khoảng này.
+) Hàm số đạt cực đại tại x = −5 với yCĐ = −8; hàm số đạt cực tiểu tại x = −1 với yCT = 0.
+)
+) Tiệm cận
Do đó x = −3 là tiệm cận đứng của đồ thị hàm số và y = x – 1 là tiệm cận xiên của đồ thị hàm số.
+) Bảng biến thiên
3. Đồ thị
+) Giao điểm của đồ thị với trục tung là
+) Giao điểm của đồ thị với trục hoành là (−1; 0).
+) Đồ thị hàm số nhận giao điểm I(−3; −4) của hai đường tiệm cận làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận này làm các trục đối xứng.
Nguồn: loigiaitoan.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Các công thức liên quan:
Công thức đạo hàm
Bài tập liên quan:
Bài 1.24 trang 32 Toán 12 Tập 1
Bài 1.24 trang 32 Toán 12 Tập 1: Một cốc chứa 30 ml dung dịch KOH (potassium hydroxide) với nồng độ 100 mg/ml. Một bình chứa dung dịch KOH khác với nồng độ 8 mg/ml được trộn vào cốc.
a) Tính nồng độ KOH trong cốc sau khi trộn x (ml) từ bình chứa, kí hiệu là C(x).
b) Coi C(x) là hàm số xác định với x ³ 0. Khảo sát sự biến thiên và vẽ đồ thị hàm số này.
c) Giải thích tại sao nồng độ KOH trong cốc giảm theo x nhưng luôn lớn hơn 8 mg/ml.
Bài 1.25 trang 32 Toán 12 Tập 1
Bài 1.25 trang 32 Toán 12 Tập 1: Trong Vật lí, ta biết rằng khi mắc song song hai điện trở R1 và R2 thì điện trở tương đương R của mạch điện được tính theo công thức (theo Vật lí đại cương, NXB Giáo dục Việt Nam, 2016).
Giả sử một điện trở 8 W được mắc song song với một biến trở như Hình 1.33. Nếu điện trở đó được kí hiệu x (W) thì điện trở tương đương R là hàm số của x. Vẽ đồ thị của hàm số y = R(x), x > 0 và dựa vào đồ thị đã vẽ, hãy cho biết:
a) Điện trở tương đương của mạch thay đổi thế nào khi x tăng.
b) Tại sao điện trở tương đương của mạch không bao giờ vượt quá 8 W.
Bài 1.22 trang 32 Toán 12 Tập 1
Bài 1.22 trang 32 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a)
b)
Bài 1.21 trang 32 Toán 12 Tập 1
Bài 1.21 trang 32 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a) y = −x3 + 3x + 1; b) y = x3 + 3x2 – x – 1.
HĐ1 trang 26 Toán 12 Tập 1
Cho hàm số . Thực hiện lần lượt các yêu cầu sau:
a) Tính y' và tìm các điểm tại đó y' = 0.
b) Xét dấu y' để tìm các khoảng đồng biến, khoảng nghịch biến và cực trị của hàm số.
c) Tính , và lập bảng biến thiên của hàm số.
d) Vẽ đồ thị của hàm số và nhận xét về tính đối xứng của đồ thị.
Luyện tập 1 trang 28 Toán 12 Tập 1
Khảo sát sự biến thiên và vẽ đồ thị của hàm số .
Mở đầu trang 26 Toán 12 Tập 1
Một đơn vị sản xuất hàng tiêu dùng ước tính chi phí để sản xuất x đơn vị sản phẩm là (triệu đồng). Khi đó chi phí trung bình cho mỗi đơn vị sản phẩm là . Hãy giải thích tại sao chi phí trung bình giảm theo x nhưng luôn lớn hơn 2 triệu đồng/sản phẩm. Điều này thể hiện trên đồ thị của hàm số y = f(x) trong Hình 1.27 như thế nào?
Luyện tập 2 trang 29 Toán 12 Tập 1
Giải bài toán ở tình huống mở đầu, coi f(x) là hàm số xác định với .
Vận dụng trang 29 Toán 12 Tập 1
Một bể chứa ban đầu có 200 lít nước. Sau đó, cứ mỗi phút người ta bơm thêm 40 lít nước, đồng thời cho vào bể 20 gam chất khử trùng (hòa tan).
a) Tính thể tích nước và khối lượng chất khử trùng có trong bể sau t phút. Từ đó tính nồng độ chất khử trùng (gam/lít) trong bể sau t phút.
b) Coi nồng độ chất khử trùng là hàm số f(t) với . Khảo sát sự biến thiên và vẽ đồ thị của hàm số này.
c) Hãy giải thích tại sao nồng độ chất khử trùng tăng theo y nhưng không vượt ngưỡng 0,5 gam/lít.
Luyện tập 3 trang 32 Toán 12 Tập 1
Khảo sát sự biến thiên và vẽ đồ thị của hàm số .