Giải bài tập Bài 1 trang 117 Toán 9 Tập 1: | Toán 9 - Cánh diều

Hướng dẫn giải chi tiết từng bước bài tập Bài 1 trang 117 Toán 9 Tập 1: . Bài 4. Góc ở tâm. Góc nội tiếp. Toán 9 - Cánh diều

Đề bài:

Quan sát Hình 62, hãy cho biết:

a) 6 góc ở tâm có hai cạnh lần lượt chứa hai điểm trong bốn điểm A, B, C, D;

b) 4 góc nội tiếp có hai cạnh lần lượt chứa ba điểm trong bốn điểm A, B, C, D.

Đáp án và cách giải chi tiết:

a) 6 góc ở tâm có hai cạnh lần lượt chứa hai điểm trong bốn điểm A, B, C, D là các góc: AOB^,AOC^,AOD^,BOC^,BOD^,COD^.

b) 4 góc nội tiếp có hai cạnh lần lượt chứa ba điểm trong bốn điểm A, B, C, D là các góc: 

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Khởi động trang 111 Toán 9 Tập 1:

Bác Ngọc dự định làm khung sắt cho khuôn cửa sổ ngôi nhà có dạng đường tròn như Hình 44. Hai thanh chắn cửa sổ gợi nên một góc có đỉnh thuộc đường tròn và hai cạnh chứa hai dây cung của đường tròn đó.

Góc có đặc điểm như vậy trong toán học gọi là góc gì?

 

Hoạt động 1 trang 111 Toán 9 Tập 1:

Cho đường tròn (O). Hãy vẽ góc xOy có đỉnh là tâm O của đường tròn đó.

 

Luyện tập 1 trang 111 Toán 9 Tập 1:

Trong Hình 47, coi mỗi khung đồng hồ là một đường tròn, kim giờ, kim phút là các tia. Số đo góc ở tâm trong mỗi hình 47a, 47b, 47c, 47d là bao nhiêu?

Hoạt động 2 trang 112 Toán 9 Tập 1:

Quan sát góc ở tâm AOB (khác góc bẹt) ở Hình 48, cho biết trong hai phần đường tròn được tô màu xanh và màu đỏ, phần nào nằm bên trong, phần nào nằm bên ngoài góc AOB.

Luyện tập 2 trang 114 Toán 9 Tập 1:

Trong Hình 53, tìm số đo của các góc ở tâm

Hoạt động 3 trang 115 Toán 9 Tập 1:

Trong Hình 55, đỉnh của góc AIB có thuộc đường tròn hay không? Hai cạnh của góc chứa hai dây cung nào của đường tròn?

Luyện tập 3 trang 115 Toán 9 Tập 1:

Hãy vẽ một đường tròn và hai góc nội tiếp trong đường tròn đó.

Hoạt động 4 trang 115 Toán 9 Tập 1:

Cho góc AIB nội tiếp đường tròn tâm O đường kính IK sao cho tâm O nằm trong góc đó (Hình 57).

a) Các cặp góc OAI^ và OIA^OBI^ và OIB^ có bằng nhau hay không?

b) Tính các tổng AOI^+2OIA^,BOI^+2OIB^.

c) Tính các tổng AOI^+AOK^,BOI^+BOK^.

d) So sánh AOK^ và 2OIA^ , BOK^ và 2OIB^,AOB^ và 2AIB^ .

 

Luyện tập 4 trang 116 Toán 9 Tập 1:

Cho đường tròn (O; R) và dây cung AB = R. Điểm C thuộc cung lớn AB, C khác A và B. Tính số đo góc ACB.

Hoạt động 5 trang 116 Toán 9 Tập 1:

Quan sát Hình 60 và nêu mối liên hệ giữa:

a) AIB^ và AmB;

b) AKB^ và AmB;

c) AIB^ và 

Luyện tập 5 trang 117 Toán 9 Tập 1:

Trong Hình 61, gọi I là giao điểm của AD và BC. Chứng minh IA.ID = IB.IC.

Bài 2 trang 117 Toán 9 Tập 1:

Cho đường tròn (O; R) và dây AB sao cho AOB^=90°. Giả sử M, N lần lượt là các điểm thuộc cung lớn AB và cung nhỏ AB (M, N khác A và B).

a) Tính độ dài đoạn thẳng AB theo R.

b) Tính số đo các góc ANB và AMB.

Bài 3 trang 117 Toán 9 Tập 1:

Trong Hình 63, cho biết AB = OA.

a) Tính số đo góc AOB.

b) Tính số đo cung nhỏ AB và cung lớn AB của (O).

c) Tính số đo góc MIN.

d) Tính số đo cung nhỏ MN và cung lớn MN của (I).

e) Tính số đo góc MKN.

Bài 4 trang 117 Toán 9 Tập 1:

Biểu đồ hình quạt tròn ở Hình 64 mô tả các thành phần của một chai nước ép hoa quả (tính theo tỉ số phần trăm). Hãy cho biết các cung tương ứng với phần biểu diễn thành phần việt quất, táo, mật ong lần lượt có số đo là bao nhiêu độ.

Bài 5 trang 117 Toán 9 Tập 1:

Cho hai đường tròn (O), (I) cắt nhau tại hai điểm A, B. Kẻ các đoạn thẳng AC, AD lần lượt là các đường kính của hai đường tròn (O), (I). Chứng minh ba điểm B, C, D thẳng hàng.

Bài 6 trang 117 Toán 9 Tập 1:

Hãy sử dụng compa và thước thẳng để vẽ tam giác ABC vuông tại A và giải thích cách làm.

Giải bài tập Toán 9 - Cánh diều

Chương 1: Phương trình và hệ phương trình bậc nhất

Bài 1. Phương trình quy về phương trình bậc nhất một ẩn.

Bài 2. Phương trình bậc nhất hai ẩn. Hệ hai phương trình bậc nhất hai ẩn.

Bài 3. Giải hệ hai phương trình bậc nhất hai ẩn.

Bài tập cuối chương 1

Chương 2. Bất đẳng thức. Bất phương trình bậc nhất một ẩn

Bài 1. Bất đẳng thức.

Bài 2. Bất phương trình bậc nhất một ẩn.

Bài tập cuối chương II.

HOẠT ĐỘNG THỰC HÀNH VÀ TRẢI NGHIỆM. Chủ đề 1. Làm quen với bảo hiểm.

Chương 3. Căn thức

Bài 1. Căn bậc hai và căn bậc ba của số thực

Bài 2. Một số phép tính về căn bậc hai của số thực.

Bài 3. Căn thức bậc hai và căn thức bậc ba của biểu thức đại số.

Bài 4. Một số phép biến đổi căn thức bậc hai của biểu thức đại số.

Bài tập cuối chương 3

Chương 4. Hệ thức lượng trong tam giác vuông

Bài 1. Tỉ số lượng giác của góc nhọn.

Bài 2. Một số hệ thức về cạnh và góc trong tam giác vuông.

Bài 3. Ứng dụng của tỉ số lượng giác của góc nhọn.

Bài tập cuối chương 4

Chương 5. Đường tròn

Bài 1. Đường tròn. Vị trí tương đối của hai đường tròn

Bài 2. Vị trí tương đối của đường thẳng và đường tròn

Bài 3. Tiếp tuyến của đường tròn

Bài 4. Góc ở tâm. Góc nội tiếp

Bài 5. Độ dài cung tròn, diện tích hình quạt tròn, diện tích hình vành khuyên

Bài tập cuối chương 5

Chương 6. Một số yếu tố thống kê và xác suất

Bài 1. Mô tả và biểu diễn dữ liệu trên các bảng, biểu đồ

Bài 2. Tần số. Tần số tương đối

Bài 3. Tần số ghép nhóm. Tần số tương đối ghép nhóm

Bài 4. Phép thử ngẫu nhiên và không gian mẫu. Xác suất của biến cố

Bài tập cuối chương 6

HOẠT ĐỘNG THỰC HÀNH VÀ TRẢI NGHIỆM. Chủ đề 2. Mật độ dân số.

Chương 7. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn

Bài 1. Hàm số y = ax² (a ≠ 0)

Bài 2. Phương trình bậc hai một ẩn.

Bài 3. Định lí Viète.

Bài tập cuối chương 7

Chương 8. Đường tròn ngoại tiếp và đường tròn nội tiếp

Bài 1. Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác

Bài 2. Tứ giác nội tiếp đường tròn

Bài tập cuối chương 8

Chương 9. Đa giác đều

Bài 1. Đa giác đều. Hình đa giác đều trong thực tiễn

Bài 2. Phép quay

Bài tập cuối chương 9

Chương 10. Hình học trực quan

Bài 1. Hình trụ

Bài 2. Hình nón

Bài 3. Hình cầu

Bài tập cuối chương 10

HOẠT ĐỘNG THỰC HÀNH VÀ TRẢI NGHIỆM. Chủ đề 3. Tạo đồ dùng dạng hình nón, hình trụ.