Giải bài tập Mở đầu trang 84 Toán 11 Tập 1 | Toán 11 - Kết nối tri thức
Hướng dẫn giải chi tiết từng bước bài tập Mở đầu trang 84 Toán 11 Tập 1. Bài 12: Đường thẳng và mặt phẳng song song. Toán 11 - Kết nối tri thức
Đề bài:
Khi xây tường gạch, người thợ thường bắt đầu với việc xây các viên gạch dẫn, sau đó căng dây nhợ dọc theo cạnh của các viên gạch dẫn đó để làm chuẩn rồi mới xây các viên gạch tiếp theo. Việc sử dụng dây căng như vậy có tác dụng gì? Toán học mô tả vị trí giữa dây căng, các mép gạch với mặt đất như thế nào?
Đáp án và cách giải chi tiết:
Sau bài học này ta sẽ giải quyết được vấn đề trên như sau:
Dây nhợ được cang dọc theo cạnh của các viên gạch dẫn, lúc này dây nhợ sẽ là một đường thẳng song song với mặt đất. Khi người thợ tiếp tục xây các viên gạch tiếp theo theo dây nhợ thì hàng gạch tiếp theo sẽ thẳng hàng và bằng, đảm bảo độ thẳng đứng và bằng phẳng cho tường được xây ra.
Toán học mô tả vị trí giữa dây căng, các mép gạch với mặt đất là các đường thẳng song song với mặt phẳng.
Nguồn: loigiaitoan.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Bài tập liên quan:
Bài 4.16 trang 87 Toán 11 Tập 1
Trong không gian, cho hai đường thẳng phân biệt a, b và mặt phẳng (P). Những mệnh đề nào sau đây là đúng?
a) Nếu a và (P) có điểm chung thì a không song song với (P).
b) Nếu a và (P) có điểm chung thì a và (P) cắt nhau.
c) Nếu a song song với b và b nằm trong (P) thì a song song với (P).
d) Nếu a và b song song với (P) thì a song song với b.
Bài 4.17 trang 87 Toán 11 Tập 1
Cho hai tam giác ABC và ABD không cùng nằm trong một mặt phẳng. Gọi M, N lần lượt là trung điểm của các cạnh AC, AD.
a) Đường thẳng AM có song song với mặt phẳng (BCD) hay không? Hãy giải thích tại sao.
b) Đường thẳng MN có song song với mặt phẳng (BCD) hay không? Hãy giải thích tại sao.
Bài 4.18 trang 87 Toán 11 Tập 1
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của hai cạnh BC, CD. Chứng minh rằng đường thẳng BD song song với mặt phẳng (AMN).
Bài 4.19 trang 87 Toán 11 Tập 1
Cho hình chóp S.ABCD có đáy là hình thang (AB // CD). Gọi E là một điểm nằm giữa S và A. Gọi (P) là mặt phẳng qua E và song song với hai đường thẳng AB, AD. Xác định giao tuyến của (P) và các mặt bên của hình chóp. Hình tạo bởi các giao tuyến là hình gì?
Bài 4.20 trang 87 Toán 11 Tập 1
Bạn Nam quan sát thấy dù cửa ra vào được mở ở vị trí nào thì mép trên của cửa luôn song song với một mặt phẳng cố định. Hãy cho biết đó là mặt phẳng nào và giải thích tại sao.
HĐ1 trang 84 Toán 11 Tập 1
Quan sát hình ảnh khung thành bóng đá và nhận xét vị trí của xà ngang, cột dọc, thanh chống và thanh bên của khung thành với mặt đất.
Câu hỏi trang 85 Toán 11 Tập 1
Hãy chỉ ra một hình ảnh đường thẳng song song với mặt phẳng trong bức ảnh bên (H.4.34).
Luyện tập 1 trang 85 Toán 11 Tập 1
Trong Ví dụ 1, đường thẳng AC cắt các mặt phẳng nào, nằm trong các mặt phẳng nào?
HĐ2 trang 85 Toán 11 Tập 1
Cho đường thẳng a không nằm trong mặt phẳng (P) và a song song với đường thẳng b nằm trong (P). Gọi (Q) là mặt phẳng chứa a và b (H.4.36).
Nếu a và (P) cắt nhau tại điểm M thì M có thuộc (Q) và M có thuộc b hay không? Hãy rút ra kết luận sau khi trả lời các câu hỏi trên.
Câu hỏi trang 85 Toán 11 Tập 1
Phát biểu trên còn đúng không nếu bỏ điều kiện “a không nằm trong mặt phẳng (P)”?
Luyện tập 2 trang 85 Toán 11 Tập 1
Trong Ví dụ 2, chứng minh rằng đường thẳng c song song với mp(a, b), đường thẳng b song song với mp(a, c).
Luyện tập 3 trang 86 Toán 11 Tập 1
Cho hình chóp S.ABCD có đáy là hình thang (AB // CD). Hai đường thẳng SD và AB có chéo nhau hay không? Chỉ ra mặt phẳng chứa đường thẳng SD và song song với AB.
Vận dụng trang 86 Toán 11 Tập 1
Trong tình huống mở đầu, hãy giải thích tại sao dây nhợ khi căng thì song song với mặt đất. Tác dụng của việc đó là gì?
HĐ3 trang 86 Toán 11 Tập 1
Cho đường thẳng a song song với mặt phẳng (P) và (Q) là một mặt phẳng chứa a. Giả sử (Q) cắt (P) theo giao tuyến b (H.4.36).
a) Hai đường thẳng a và b có thể chéo nhau hay không?
b) Hai đường thẳng a và b có thể cắt nhau không?
Luyện tập 4 trang 87 Toán 11 Tập 1
Trong Ví dụ 4, gọi (Q) là mặt phẳng qua E và song song với hai đường thẳng AB, AD. Xác định giao tuyến của (Q) với các mặt của tứ diện.