Giải bài tập Luyện tập 4 trang 87 Toán 11 Tập 1 | Toán 11 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Luyện tập 4 trang 87 Toán 11 Tập 1. Bài 12: Đường thẳng và mặt phẳng song song. Toán 11 - Kết nối tri thức

Đề bài:

Trong Ví dụ 4, gọi (Q) là mặt phẳng qua E và song song với hai đường thẳng AB, AD. Xác định giao tuyến của (Q) với các mặt của tứ diện.

Đáp án và cách giải chi tiết:

Mặt phẳng (ABC) chứa đường thẳng AB song song với mặt phẳng (Q) nên mặt phẳng (ABC) cắt mặt phẳng (Q) theo giao tuyến song song với AB. Vẽ EF // AB (F thuộc BC) thì EF là giao tuyến của (Q) và (ABC).

Mặt phẳng (ACD) chứa đường thẳng AD song song với mặt phẳng (Q) nên mặt phẳng (ACD) cắt mặt phẳng (Q) theo giao tuyến song song với AD. Vẽ EN // AD (N thuộc CD) thì EN là giao tuyến của (Q) và (ACD). Khi đó FN là giao tuyến của (Q) và (BCD).

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Bài 4.16 trang 87 Toán 11 Tập 1

Trong không gian, cho hai đường thẳng phân biệt a, b và mặt phẳng (P). Những mệnh đề nào sau đây là đúng?

a) Nếu a và (P) có điểm chung thì a không song song với (P).

b) Nếu a và (P) có điểm chung thì a và (P) cắt nhau.

c) Nếu a song song với b và b nằm trong (P) thì a song song với (P).

d) Nếu a và b song song với (P) thì a song song với b.

Bài 4.17 trang 87 Toán 11 Tập 1

Cho hai tam giác ABC và ABD không cùng nằm trong một mặt phẳng. Gọi M, N lần lượt là trung điểm của các cạnh AC, AD.

a) Đường thẳng AM có song song với mặt phẳng (BCD) hay không? Hãy giải thích tại sao.

b) Đường thẳng MN có song song với mặt phẳng (BCD) hay không? Hãy giải thích tại sao.

Bài 4.18 trang 87 Toán 11 Tập 1

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của hai cạnh BC, CD. Chứng minh rằng đường thẳng BD song song với mặt phẳng (AMN).

Bài 4.19 trang 87 Toán 11 Tập 1

Cho hình chóp S.ABCD có đáy là hình thang (AB // CD). Gọi E là một điểm nằm giữa S và A. Gọi (P) là mặt phẳng qua E và song song với hai đường thẳng AB, AD. Xác định giao tuyến của (P) và các mặt bên của hình chóp. Hình tạo bởi các giao tuyến là hình gì?

Bài 4.20 trang 87 Toán 11 Tập 1

Bạn Nam quan sát thấy dù cửa ra vào được mở ở vị trí nào thì mép trên của cửa luôn song song với một mặt phẳng cố định. Hãy cho biết đó là mặt phẳng nào và giải thích tại sao.

Mở đầu trang 84 Toán 11 Tập 1

Khi xây tường gạch, người thợ thường bắt đầu với việc xây các viên gạch dẫn, sau đó căng dây nhợ dọc theo cạnh của các viên gạch dẫn đó để làm chuẩn rồi mới xây các viên gạch tiếp theo. Việc sử dụng dây căng như vậy có tác dụng gì? Toán học mô tả vị trí giữa dây căng, các mép gạch với mặt đất như thế nào?

HĐ1 trang 84 Toán 11 Tập 1

Quan sát hình ảnh khung thành bóng đá và nhận xét vị trí của xà ngang, cột dọc, thanh chống và thanh bên của khung thành với mặt đất.

Câu hỏi trang 85 Toán 11 Tập 1

Hãy chỉ ra một hình ảnh đường thẳng song song với mặt phẳng trong bức ảnh bên (H.4.34).

Luyện tập 1 trang 85 Toán 11 Tập 1

Trong Ví dụ 1, đường thẳng AC cắt các mặt phẳng nào, nằm trong các mặt phẳng nào?

HĐ2 trang 85 Toán 11 Tập 1

Cho đường thẳng a không nằm trong mặt phẳng (P) và a song song với đường thẳng b nằm trong (P). Gọi (Q) là mặt phẳng chứa a và b (H.4.36).

Nếu a và (P) cắt nhau tại điểm M thì M có thuộc (Q) và M có thuộc b hay không? Hãy rút ra kết luận sau khi trả lời các câu hỏi trên.

Câu hỏi trang 85 Toán 11 Tập 1

Phát biểu trên còn đúng không nếu bỏ điều kiện “a không nằm trong mặt phẳng (P)”?

Luyện tập 2 trang 85 Toán 11 Tập 1

Trong Ví dụ 2, chứng minh rằng đường thẳng c song song với mp(a, b), đường thẳng b song song với mp(a, c).

Luyện tập 3 trang 86 Toán 11 Tập 1

Cho hình chóp S.ABCD có đáy là hình thang (AB // CD). Hai đường thẳng SD và AB có chéo nhau hay không? Chỉ ra mặt phẳng chứa đường thẳng SD và song song với AB.

Vận dụng trang 86 Toán 11 Tập 1

Trong tình huống mở đầu, hãy giải thích tại sao dây nhợ khi căng thì song song với mặt đất. Tác dụng của việc đó là gì?

HĐ3 trang 86 Toán 11 Tập 1

Cho đường thẳng a song song với mặt phẳng (P) và (Q) là một mặt phẳng chứa a. Giả sử (Q) cắt (P) theo giao tuyến b (H.4.36).

a) Hai đường thẳng a và b có thể chéo nhau hay không?

b) Hai đường thẳng a và b có thể cắt nhau không?

Giải bài tập Toán 11 - Kết nối tri thức

Chương 1: Hàm số lượng giác và phương trình lượng giác

Bài 1: Giá trị lượng giác của góc lượng giác

Bài 2: Công thức lượng giác

Bài 3: Hàm số lượng giác

Bài 4: Phương trình lượng giác cơ bản

Bài tập cuối chương 1

Chương 2: Dãy số. Cấp số cộng và cấp số nhân

Bài 5: Dãy số

Bài 6: Cấp số cộng

Bài 7: Cấp số nhân

Bài tập cuối chương 2

Chương 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu ghép nhóm

Bài 8: Mẫu số liệu ghép nhóm

Bài 9: Các số đặc trưng đo xu thế trung tâm

Bài tập cuối chương 3

Chương 4: Quan hệ song song trong không gian

Bài 10: Đường thẳng và mặt phẳng trong không gian

Bài 11: Hai đường thẳng song song

Bài 12: Đường thẳng và mặt phẳng song song

Bài 13: Hai mặt phẳng song song

Bài 14: Phép chiếu song song

Bài tập cuối chương 4

Chương 5: Giới hạn. Hàm số liên tục

Bài 15: Giới hạn của dãy số

Bài 16: Giới hạn của hàm số

Bài 17: Hàm số liên tục

Bài tập cuối chương 5

Hoạt động thực hành trải nghiệm - Tập 1

Một vài áp dụng của toán học trong tài chính

Lực căng mặt ngoài của nước

Hoạt động thực hành trải nghiệm - Tập 2

Một vài mô hình toán học sử dụng hàm số mũ và hàm số lôgarit

Hoạt động thực hành trải nghiệm Hình học

Chương 6: Hàm số mũ và hàm số lôgarit

Bài 18: Lũy thừa với số mũ thực

Bài 19: Lôgarit

Bài 20: Hàm số mũ và hàm số lôgarit

Bài 21: Phương trình, bất phương trình mũ và lôgarit

Bài tập cuối chương 6

Chương 7: Quan hệ vuông góc trong không gian

Bài 22: Hai đường thẳng vuông góc

Bài 23: Đường thẳng vuông góc với mặt phẳng

Bài 24: Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng

Bài 25: Hai mặt phẳng vuông góc

Bài 26: Khoảng cách

Bài 27: Thể tích

Bài tập cuối chương 7

Chương 8: Các quy tắc tính xác suất

Bài 28: Biến cố hợp, biến cố giao, biến cố độc lập

Bài 29: Công thức cộng xác suất

Bài 30: Công thức nhân xác suất cho hai biến cố độc lập

Bài tập cuối chương 8

Chương 9: Đạo hàm

Bài 31: Định nghĩa và ý nghĩa của đạo hàm

Bài 32: Các quy tắc tính đạo hàm

Bài 33: Đạo hàm cấp hai

Bài tập cuối chương 9