Giải bài tập Luyện tập 6 trang 33 Toán 12 Tập 2 | SGK Toán 12 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Luyện tập 6 trang 33 Toán 12 Tập 2. Bài 14. Phương trình mặt phẳng.. SGK Toán 12 - Kết nối tri thức

Đề bài:

Trong không gian Oxyz, viết phương trình mặt phẳng (α) đi qua điểm M(1; 2; −4) và vuông góc với trục Oz.

Đáp án và cách giải chi tiết:

Mặt phẳng (α) đi qua điểm M(1; 2; −4) và vuông góc với trục Oz nhận vectơ = (0; 0; 1) làm vectơ pháp tuyến.

Do đó phương trình mặt phẳng (α) là: z + 4 = 0.

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Bài 5.1 trang 39 Toán 12 Tập 2

Bài 5.1 trang 39 Toán 12 Tập 2: Trong không gian Oxyz, viết phương trình mặt phẳng đi qua điểm M(1; 2; −1) và vuông góc với trục Ox.

Bài 5.2 trang 39 Toán 12 Tập 2

Bài 5.2 trang 39 Toán 12 Tập 2: Trong không gian Oxyz, cho hình hộp ABCD.A'B'C'D', với A(1; −1; 3), B(0; 2; 4), D(2; −1; 1), A'(0; 1; 2).

a) Tìm tọa độ các điểm C, B', D'.

b) Viết phương trình mặt phẳng (CB'D').

Bài 5.3 trang 39 Toán 12 Tập 2

Bài 5.3 trang 39 Toán 12 Tập 2: Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M(1; −1; 5) và vuông góc với hai mặt phẳng (Q): 3x + 2y – z = 0, (R): x + y – z = 0.

Bài 5.4 trang 39 Toán 12 Tập 2

Bài 5.4 trang 39 Toán 12 Tập 2: Trong không gian Oxyz, viết phương trình mặt phẳng đi qua M(2; 3; −1), song song với trục Ox và vuông góc với mặt phẳng (Q): x + 2y – 3z + 1 = 0.

Bài 5.5 trang 39 Toán 12 Tập 2

Bài 5.5 trang 39 Toán 12 Tập 2: Trong không gian Oxyz, tính khoảng cách từ gốc tọa độ đến mặt phẳng (P): 2x + 2y – z + 1 = 0.

Bài 5.6 trang 39 Toán 12 Tập 2

Bài 5.6 trang 39 Toán 12 Tập 2: Trong không gian Oxyz, cho hai mặt phẳng (P): x + y + z + 2 = 0, (Q): x + y + z + 6 = 0. Chứng minh rằng hai mặt phẳng đã cho song song với nhau và tính khoảng cách giữa hai mặt phẳng đó.

Bài 5.7 trang 39 Toán 12 Tập 2

Bài 5.7 trang 39 Toán 12 Tập 2: Trong không gian Oxyz, cho hai mặt phẳng (P): x + 3y – z = 0, (Q): x – y – 2z + 1 = 0.

a) Chứng minh rằng hai mặt phẳng (P) và (Q) vuông góc với nhau.

b) Tìm điểm M thuộc trục Ox và cách đều hai mặt phẳng (P) và (Q).

Bài 5.8 trang 39 Toán 12 Tập 2

Bài 5.8 trang 39 Toán 12 Tập 2: Bác An dự định làm bốn mái của ngôi nhà sao cho chúng là bốn mặt bên của một hình chóp đều và các mái nhà kề nhau thì vuông góc với nhau. Hỏi ý tưởng trên có thực hiện được không?

Bài 5.9 trang 39 Toán 12 Tập 2

Bài 5.9 trang 39 Toán 12 Tập 2: Trong không gian Oxyz, một ngôi nhà có sàn nhà thuộc mặt phẳng Oxy, trần nhà tầng 1 thuộc mặt phẳng z – 1 = 0, mái nhà tầng 2 thuộc mặt phẳng x + y + 50z – 100 = 0. Hỏi trong ba mặt phẳng tương ứng chứa sàn nhà, trần tầng 1, mái tầng 2, hai mặt phẳng nào song song với nhau.

Bài 5.10 trang 40 Toán 12 Tập 2

Bài 5.10 trang 40 Toán 12 Tập 2: Xét một cối xay lúa trong không gian Oxyz, với đơn vị đo là mét. Nếu tác động vào tai cối xay lúa (ở vị trí P) một lực F thì moment lực M được tính bởi công thức M=OP, F (H.5.16). Trong quá trình xay, các thanh gỗ AB và PQ luôn có phương nằm ngang. Vectơ lực F có giá song song với AB. Giải thích vì sao giá của vectơ moment lực M có phương thẳng đứng?

Mở đầu trang 29 Toán 12 Tập 2

Một vật thể chuyển động trong không gian Oxyz. Tại mỗi thời điểm t, vật thể ở vị trí M(cost – sint; cost + sint; cost). Hỏi vật thể có chuyển động trong một mặt phẳng cố định hay không?

HĐ1 trang 29 Toán 12 Tập 2

Trên mặt bàn phẳng, đặt một vật. Khi đó, mặt bàn tác động lên vật phản lực pháp tuyến , giá của vectơ vuông góc với mặt bàn. Nếu mặt bàn thuộc mặt phẳng nằm ngang thì có phương gì? (H.5.1)

Luyện tập 1 trang 30 Toán 12 Tập 2

Trong không gian Oxyz, cho các điểm A(1; −2; 3), B(−3; 0; 1). Gọi (α) là mặt phẳng trung trực của đoạn thẳng AB. Hãy chỉ ra một vectơ pháp tuyến của (α).

HĐ2 trang 30 Toán 12 Tập 2

Trong không gian Oxyz, cho hai vectơ = (a; b; c) và = (a'; b'; c').

a) Vectơ =. (bc' - b'c; ca' - c'a; ab' - a'b) có vuông góc với cả hai vectơ  và hay không?

b) khi và chỉ khi  và có mối quan hệ gì? 

Luyện tập 2 trang 31 Toán 12 Tập 2

Trong không gian Oxyz, cho = (2; 3; 1) và = (4; 6; 2). Tính .

HĐ3 trang 31 Toán 12 Tập 2

Trong không gian Oxyz, cho hai vectơ  không cùng phương và có giá nằm trong hoặc song song với mặt phẳng (P).

a) Vectơ có khác vectơ-không và giá của nó có vuông góc với cả hai giá của không?

b) Mặt phẳng (P) có nhận làm một vectơ pháp tuyến hay không?

Luyện tập 3 trang 31 Toán 12 Tập 2

Trong không gian Oxyz, cho ba điểm không thẳng hàng A(1; −2; 1), B(−2; 1; 0), C(−2; 3; 2). Hãy chỉ ra một vectơ pháp tuyến của mặt phẳng (ABC).

Vận dụng 1 trang 31 Toán 12 Tập 2

Moment lực là một đại lượng Vật lí, thể hiện tác động gây ra sự quay quanh một điểm hoặc một trục của một vật thể. Trong không gian Oxyz, với đơn vị đo là mét, nếu tác động vào cán mỏ lết tại vị trí P một lực  để vặn con ốc ở vị trí O (H.5.6) thì moment lực được tính bởi công thức .

a) Cho = (x; y; z), = (a; b; c). Tính .

b) Giải thích vì sao, nếu giữ nguyên lực tác động trong khi thay vị trí đặt lực từ P sang P' sao cho  thì moment lực sẽ tăng lên gấp đôi. Từ đó, ta có thể rút ra điều gì để đỡ tốn sức khi dùng mỏ lết vặn ốc?

HĐ4 trang 32 Toán 12 Tập 2

Trong không gian Oxyz, cho mặt phẳng (α). Gọi = (A; B; C) là một vectơ pháp tuyến của (α) và M0(x0; y0; z0) là một điểm thuộc (α).

a) Một điểm M(x; y; z) thuộc (α) khi và chỉ khi hai vectơ  và có mối quan hệ gì?

b) Điểm M(x; y; z) thuộc (α) khi và chỉ khi tọa độ của nó thỏa mãn hệ thức nào?

Luyện tập 4 trang 32 Toán 12 Tập 2

Trong không gian Oxyz, phương trình nào trong các phương trình sau là phương trình tổng quát của một mặt phẳng?

a) x2 + 2y2 + 3z2 – 1 = 0;

b) - y + + 5 = 0;

c) xy + 5 = 0.

Giải bài tập SGK Toán 12 - Kết nối tri thức

Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Bài 1. Tính đơn điệu và cực trị của hàm số.

Bài 2. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số.

Bài 3. Đường tiệm cận của đồ thị hàm số.

Bài 4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số.

Bài 5. Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn.

Bài tập cuối chương 1

Chương 2. Vectơ và hệ trục tọa độ trong không gian

Bài 6. Vectơ trong không gian.

Bài 7. Hệ trục toạ độ trong không gian.

Bài 8. Biểu thức toạ độ của các phép toán vectơ.

Bài tập cuối chương 2.

Chương 3. Các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm

Bài 9. Khoảng biến thiên và khoảng tứ phân vị.

Bài 10. Phương sai và độ lệch chuẩn.

Bài tập cuối chương 3.

Hoạt động thực hành và trải nghiệm

Khảo sát và vẽ đồ thị hàm số với phần mềm GeoGebra.

Vẽ vectơ tổng của ba vectơ trong không gian bằng phần mềm GeoGebra.

Độ dài gang tay (gang tay của bạn dài bao nhiêu?)

Chương 4. Nguyên hàm và Tích phân.

Bài 11. Nguyên hàm.

Bài 12. Tích phân.

Bài 13. Ứng dụng hình học của tích phân.

Bài tập cuối chương 4.

Chương 5. Phương pháp tọa độ trong không gian

Bài 14. Phương trình mặt phẳng.

Bài 15. Phương trình đường thẳng trong không gian.

Bài 16. Công thức tính góc trong không gian.

Bài 17. Phương trình mặt cầu.

Bài tập cuối chương 5.

Chương 6. Xác suất có điều kiện

Bài 18. Xác suất có điều kiện.

Bài 19. Công thức xác suất toàn phần và công thức Bayes.

Bài tập cuối chương 6

Hoạt động thực hành và trải nghiệm

Tính nguyên hàm và tích phân với phần mềm GeoGebra.

Tính gần đúng tích phân bằng phương pháp hình thang.

Vẽ đồ hoạ 3D với phần mềm GeoGebra.