Giải bài tập Luyện tập 5 trang 114 Toán 11 Tập 2 | Toán 11 - Cánh diều

Hướng dẫn giải chi tiết từng bước bài tập Luyện tập 5 trang 114 Toán 11 Tập 2. Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối. Toán 11 - Cánh diều

Đề bài:

Cho khối tứ diện đều ABCD cạnh a. Chứng minh rằng thể tích của khối tứ diện đó bằng .

Đáp án và cách giải chi tiết:

Gọi M là trung điểm của BC, O là trọng tâm tam giác BCD.

Vì ABCD là hình tứ diện đều nên BCD là tam giác đều.

Mà O là trọng tâm tam giác BCD nên O cũng là tâm đường tròn ngoại tiếp tam giác BCD.

Do đó AO ⊥ (BCD).

Xét tam giác đều BCD có: DM là đường trung tuyến (do M là trung điểm của BC) cũng đồng thời là đường cao của tam giác nên DM ⊥ BC.

Do M là trung điểm của BC nên

Áp dụng định lí Pythagore vào tam giác DMC vuông tại M (do DM ⊥ BC) có:

DC2 = DM2 + MC2

Do đó

Vì O là trọng tâm tam giác BCD nên

Do AO ⊥ (BCD) và DO ⊂ (BCD) nên AO ⊥ DO, do đó tam giác ADO vuông tại O.

Áp dụng định lí Pythagore vào tam giác ADO vuông tại O có:

AD2 = AO2 + DO2

Suy ra

Diện tích tam giác BCD đều có đường cao DM là:

Thể tích của khối tứ diện đều ABCD cạnh a có chiều cao và diện tích đáy  là:

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Bài 1 trang 115 Toán 11 Tập 2

Quan sát và cho biết chiếc đèn treo ở Hình 96a, trạm khảo sát trắc địa ở Hình 96b có dạng hình gì?

Bài 4 trang 115 Toán 11 Tập 2

Một chiếc bánh chưng có dạng khối hộp chữ nhật với kích thước ba cạnh là 15 cm, 15 cm và 6 cm. Tính thể tích của chiếc bánh chưng đó.

Bài 5 trang 115 Toán 11 Tập 2

Một miếng pho mát có dạng khối lăng trụ đứng với chiều cao 10 cm và đáy là tam giác vuông cân có cạnh góc vuông bằng 12 cm. Tính khối lượng của miếng pho mát theo đơn vị gam, biết khối lượng riêng của loại pho mát đó là 3 g/cm3.

Câu hỏi khởi động trang 107 Toán 11 Tập 2

Ở lớp 7, ta đã làm quen với hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác, tức là những hình lăng trụ đứng có đáy là tam giác hoặc tứ giác.

Hình lăng trụ đứng với đáy là đa giác, đặc biệt là đa giác đều, có tính chất gì (Hình 97)?

Hoạt động 1 trang 107 Toán 11 Tập 2

Cho hình lăng trụ tam giác có các mặt bên là hình chữ nhật ở Hình 80a, 80b. Hãy cho biết mỗi cạnh bên của hình lăng trụ đó có vuông góc với các mặt đáy hay không.

Luyện tập 1 trang 108 Toán 11 Tập 2

Cho hình lập phương có cạnh bằng a. Tính độ dài đường chéo của hình lập phương đó.

Hoạt động 2 trang 108 Toán 11 Tập 2

Để tạo mô hình một tháp chuông ở Hình 83a từ một tấm bìa hình vuông, bạn Dũng cắt bỏ phần màu trắng gồm bốn tam giác cân bằng nhau có đáy là các cạnh của tấm bìa (Hình 83b) rồi gấp lại phần màu xanh để tạo thành một hình chóp tứ giác. Quan sát Hình 83a, 83b và cho biết:

a) Đáy của hình chóp mà bạn Dũng tạo ra là tứ giác có tính chất gì;

b) Các cạnh bên của hình chóp đó có bằng nhau hay không.

Luyện tập 2 trang 110 Toán 11 Tập 2

Cho hình chóp tam giác đều S.ABC. Chứng minh rằng các cạnh bên tạo với mặt phẳng chứa đáy các góc bằng nhau.

Hoạt động 3 trang 110 Toán 11 Tập 2

Khối bê tông ở Hình 87a gợi nên hình ảnh một hình chóp bị cắt đi bởi mặt phẳng (R) song song với đáy. Hình 87b là hình biểu diễn của khối bê tông ở Hình 87a. Hãy dự đoán về mối quan hệ giữa các đường thẳng chứa cạnh A1B1, A2B2, A3B3, A4B4.

Luyện tập 3 trang 111 Toán 11 Tập 2

Cho hình chóp đều S.ABC. Gọi A’, B’, C’ lần lượt là trung điểm của các đoạn thẳng SA, SB, SC. Chứng minh rằng phần hình chóp đã cho giới hạn bởi hai mặt phẳng (ABC) và (A’B’C’) là hình chóp cụt đều.

Hoạt động 4 trang 112 Toán 11 Tập 2

Hãy nêu lại công thức tính thể tích của khối lăng trụ đứng tam giác, khối lăng trụ đứng tứ giác.

Luyện tập 4 trang 112 Toán 11 Tập 2

Tính thể tích của khối lăng trụ ABC.A’B’C’ biết tất cả các cạnh bằng a và hình chiếu của A’ trên mặt phẳng (ABC) là trung điểm của AB.

Luyện tập 6 trang 114 Toán 11 Tập 2

Một thùng đựng rác có dạng khối chóp cụt tứ giác đều với hai cạnh đáy lần lượt dài 2 dm và 3 dm, chiều cao bằng 4 dm. Tính thể tích của thùng đựng rác.

Bài 2 trang 115 Toán 11 Tập 2

Cho hình chóp đều S.ABCD có các cạnh bên và các cạnh đáy đều bằng a.

a) Chứng minh rằng các tam giác ASC và BSD là tam giác vuông cân.

b) Gọi O là giao điểm của AC và BD, chứng minh rằng đường thẳng SO vuông góc với mặt phẳng (ABCD).

c) Chứng minh rằng góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng 45°.

Bài 3 trang 115 Toán 11 Tập 2

Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh a. Góc giữa đường thẳng AC’ và mặt phẳng (ABCD) bằng 60°.

a) Chứng minh rằng hai mặt phẳng (ACC’A’) và (BDD’B’) vuông góc với nhau.

b) Tính khoảng cách giữa hai đường thẳng AB và C’D’.

Bài 6 trang 115 Toán 11 Tập 2

Một loại đèn đá muối có dạng khối chóp tứ giác đều (Hình 97). Tính theo a thể tích của đèn đá muối đó, giả sử các cạnh đáy và các cạnh bên đều bằng a.

Bài 7 trang 115 Toán 11 Tập 2

Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều (Hình 98). Cạnh đáy dưới dài 5 m, cạnh đáy trên dài 2 m, cạnh bên dài 3 m. Biết rằng chân tháp được làm bằng bê tông tươi với giá tiền là 1 470 000 đồng/m3. Tính số tiền để mua bê tông tươi làm chân tháp theo đơn vị đồng.

Giải bài tập Toán 11 - Cánh diều

Chương 1: Hàm số lượng giác và phương trình lượng giác

Bài 1: Góc lượng giác. Giá trị lượng giác của góc lượng giác

Bài 2: Các phép biến đổi lượng giác

Bài 3: Hàm số lượng giác và đồ thị

Bài 4: Phương trình lượng giác cơ bản

Bài tập cuối chương 1

Chương 2: Dãy số. Cấp số cộng. Cấp số nhân

Bài 1: Dãy số

Bài 2: Cấp số cộng

Bài 3: Cấp số nhân

Bài tập cuối chương 2

Chương 3: Giới hạn. Hàm số liên tục

Bài 1: Giới hạn của dãy số

Bài 2: Giới hạn của hàm số

Bài 3: Hàm số liên tục

Bài tập cuối chương 3

Hoạt động thực hành và trải nghiệm - Tập 1

Chủ đề 1: Một số hình thức đầu tư tài chính

Chương 4: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song

Bài 1: Đường thẳng và mặt phẳng trong không gian

Bài 2: Hai đường thẳng song song trong không gian

Bài 3: Đường thẳng và mặt phẳng song song

Bài 4: Hai mặt phẳng song song

Bài 5: Hình lăng trụ và hình hộp

Bài 6: Phép chiếu song song. Hình biểu diễn của một hình không gian

Bài tập cuối chương 4

Chương 5: Một số yếu tố thống kê và xác suất

Bài 1: Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm

Bài 2: Biến cố hợp và biến cố giao. Biến cố độc lập. Các quy tắc tính xác suất

Bài tập cuối chương 5

Chương 6: Hàm số mũ và hàm số lôgarit

Bài 1: Phép tính lũy thừa với số mũ thực

Bài 2: Phép tính lôgarit

Bài 3: Hàm số mũ. Hàm số lôgarit

Bài 4: Phương trình, bất phương trình mũ và lôgarit

Bài tập cuối chương 6

Chương 7: Đạo hàm

Bài 1: Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm

Bài 2: Các quy tắc tính đạo hàm

Bài 3: Đạo hàm cấp hai

Bài tập cuối chương 7

Chương 8: Quan hệ vuông góc trong không gian. Phép chiếu vuông góc

Bài 1: Hai đường thẳng vuông góc

Bài 2: Đường thẳng vuông góc với mặt phẳng

Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện

Bài 4: Hai mặt phẳng vuông góc

Bài 5: Khoảng cách

Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối

Bài tập cuối chương 8

Hoạt động thực hành và trải nghiệm - Tập 2

Chủ đề 2: Tính thể tích một số hình khối trong thực tiễn