Giải bài tập Bài 6 trang 99 Toán 11 Tập 2 | Toán 11 - Cánh diều
Hướng dẫn giải chi tiết từng bước bài tập Bài 6 trang 99 Toán 11 Tập 2. Bài 4: Hai mặt phẳng vuông góc. Toán 11 - Cánh diều
Đề bài:
Cho hình lăng trụ ABC.A’B’C’ có tất cả các cạnh cùng bằng a, hai mặt phẳng (A’AB) và (A’AC) cùng vuông góc với (ABC).
a) Chứng minh rằng AA’ ⊥ (ABC).
b) Tính số đo góc giữa đường thẳng A’B và mặt phẳng (ABC).
Đáp án và cách giải chi tiết:
a) Do A ∈ (A’AB) ∩ (A’AC) và A’ ∈ (A’AB) ∩ (A’AC).
Suy ra AA’ = (A’AB) ∩ (A’AC).
Ta có: (A’AB) ⊥ (ABC);
(A’AC) ⊥ (ABC);
(A’AB) ∩ (A’AC) = AA’.
Do đó AA’ ⊥ (ABC).
b) Do AA’ ⊥ (ABC) nên AB là hình chiếu của A’B trên (ABC).
Suy ra góc giữa đường thẳng A’B và mặt phẳng (ABC) bằng
Vì AA’ ⊥ (ABC) và AB ⊂ (ABC) nên AA’ ⊥ AB.
Xét tam giác A’AB vuông tại A có:
Vậy góc giữa đường thẳng A’B và mặt phẳng (ABC) bằng 45°.
Nguồn: loigiaitoan.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Bài tập liên quan:
Bài 1 trang 99 Toán 11 Tập 2
Quan sát ba mặt phẳng (P), (Q), (R) ở Hình 57, chỉ ra hai cặp mặt phẳng mà mỗi cặp gồm hai mặt phẳng vuông góc với nhau. Hãy sử dụng kí hiệu để viết những kết quả đó.
Bài 2 trang 99 Toán 11 Tập 2
Chứng minh: Nếu hai mặt phẳng vuông góc với nhau thì mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.
Bài 3 trang 99 Toán 11 Tập 2
Chứng minh các định lí sau:
a) Nếu hai mặt phẳng (phân biệt) cùng vuông góc với mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau theo một giao tuyến vuông góc với mặt phẳng thứ ba đó;
b) Cho hai mặt phẳng song song. Nếu một mặt phẳng vuông góc với một trong hai mặt phẳng đó thì vuông góc với mặt phẳng còn lại.
Bài 4 trang 99 Toán 11 Tập 2
Cho một đường thẳng không vuông góc với mặt phẳng cho trước. Chứng minh rằng tồn tại duy nhất một mặt phẳng chứa đường thẳng đó và vuông góc với mặt phẳng đã cho.
Bài 5 trang 99 Toán 11 Tập 2
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt phẳng (SAB) vuông góc với mặt đáy, tam giác SAB vuông cân tại S. Gọi M là trung điểm của AB. Chứng minh rằng:
a) SM ⊥ (ABCD);
b) AD ⊥ (SAB);
c) (SAD) ⊥ (SBC).