Giải bài tập Bài 3.2 trang 79 Toán 12 Tập 1 | SGK Toán 12 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Bài 3.2 trang 79 Toán 12 Tập 1. Bài 9. Khoảng biến thiên và khoảng tứ phân vị.. SGK Toán 12 - Kết nối tri thức

Đề bài:

Bài 3.2 trang 79 Toán 12 Tập 1: Thu nhập theo tháng (đơn vị: triệu đồng) của người lao động ở hai nhà máy như sau:

Tính mức thu nhập trung bình của người lao động ở hai nhà máy trên. Dựa vào khoảng tứ phân vị, hãy xác định xem mức thu nhập của người lao động ở nhà máy nào biến động nhiều hơn.

Đáp án và cách giải chi tiết:

Chọn giá trị đại diện cho mẫu số liệu ta có:

Mức thu nhập trung bình của người lao động nhà máy A là:

6,5.20+9,5.35+12,5.45+15,5.35+18,5.2020+35+45+35+20=12,5 (triệu đồng)

Mức thu nhập trung bình của người lao động nhà máy B là:

6,5.17+9,5.23+12,5.30+15,5.23+18,5.1717+23+30+23+17=12,5 (triệu đồng)

Nhà máy A

Cỡ mẫu n = 20 + 35 + 45 + 35 + 20 = 155.

Gọi x1; x2; …; x155 là mức thu nhập của 155 công nhân lao động của nhà máy A và được sắp xếp theo thứ tự tăng dần

Tứ phân vị thứ nhất của mẫu số liệu là x39 thuộc nhóm [8; 11) nên nhóm chứa tứ phân vị thứ nhất là [8; 11).

Ta có Q1=8+1554-2035.11-89,6

Tứ phân vị thứ ba của mẫu số liệu là x117 thuộc nhóm [14; 17) nên nhóm chứa tứ phân vị thứ ba là [14; 17).

Ta có Q3=14+155.34-10035.17-1415,4

Khoảng tứ phân vị: RAQ = 15,4 – 9,6 = 5,8.

Nhà máy B

Cỡ mẫu n = 17 + 23 + 30 + 23 + 17 = 110.

Gọi y1; y2; …; y110 là mức thu nhập của 110 công nhân lao động của nhà máy B và được sắp xếp theo thứ tự tăng dần.

Tứ phân vị thứ nhất của mẫu số liệu là y28 thuộc nhóm [8; 11) nên nhóm chứa tứ phân vị thứ nhất là [8; 11).

Ta có Q1=8+1104-1723.11-89,4

Tứ phân vị thứ ba của mẫu số liệu là y83 thuộc nhóm [14; 17) nên nhóm chứa tứ phân vị thứ ba là [14; 17).

Ta có Q3=14+3.1104-7023.17-1415,6

Khoảng tứ phân vị .

Vì RBQ > RAQ nên mức thu nhập của người lao động ở nhà máy B biến động nhiều hơn.

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Các công thức liên quan:

Mẫu số liệu ghép nhóm. Số trung bình; Mốt; Trung vị; Tứ phân vị; Phương sai và độ lệch chuẩn

Số liệu ghép nhóm. Khoảng biến thiên. Số trung bình. Mốt. Trung vị. Tứ phân vị. Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm. Lớp 11 và 12.

Bài tập liên quan:

Bài 3.3 trang 78 Toán 12 Tập 1

Bài 3.3 trang 78 Toán 12 Tập 1: Bảng sau đây cho biết chiều cao của các học sinh lớp 12A và 12B.

a) Tìm khoảng biến thiên, khoảng tứ phân vị cho các mẫu số liệu ghép nhóm về chiều cao của học sinh lớp 12A, 12B.

b) Để so sánh độ phân tán về chiều cao của học sinh hai lớp này ta nên dùng khoảng biến thiên hay khoảng tứ phân vị? Vì sao?

Mở đầu trang 75 Toán 12 Tập 1

Thống kê số ngày trong tháng Sáu năm 2021 và năm 2022 theo nhiệt độ cao nhất trong ngày tại Hà Nội, người ta thu được bảng sau:

Hỏi tháng Sáu năm nào ở Hà Nội nhiệt độ cao nhất trong ngày biến đổi nhiều hơn?

HĐ1 trang 76 Toán 12 Tập 1

Trong tình huống mở đầu, gọi là nhiệt độ cao nhất trong ngày của 30 ngày tháng Sáu năm 2021 (mẫu số liệu gốc).

a) Có thể tính chính xác khoảng biến thiên cho mẫu số liệu gốc hay không?

b) Giá trị lớn nhất, giá trị nhỏ nhất  có thể nhận là gì?

c) Hãy đưa ra một giá trị xấp xỉ cho khoảng biến thiên của mẫu số liệu gốc.

Câu hỏi trang 76 Toán 12 Tập 1

Chỉ ra rằng khoảng biến thiên của mẫu số liệu ghép nhóm trong Bảng 3.1 lớn hơn khoảng biến thiên của mẫu số liệu gốc.

Luyện tập 1 trang 77 Toán 12 Tập 1

Thời gian hoàn thành bài kiểm tra môn Toán của các bạn trong lớp 12C được cho trong bảng sau:

a) Tính khoảng biến thiên R cho mẫu số liệu ghép nhóm trên.

b) Nếu biết học sinh hoàn thành bài kiểm tra sớm nhất mất 27 phút và muộn nhất mất 43 phút thì khoảng biến thiên của mẫu số liệu gốc là bao nhiêu?

HĐ2 trang 77 Toán 12 Tập 1

Trong tình huống mở đầu, gọi là nhiệt độ cao nhất trong ngày của 30 ngày tháng Sáu năm 2022 (mẫu số liệu gốc).

a) Có thể tính chính xác khoảng tứ phân vị của mẫu số liệu gốc hay không?

b) Tìm tứ phân vị thứ nhất và tứ phân vị thứ ba  cho mẫu số liệu ghép nhóm.

c) Hãy đưa ra một giá trị xấp xỉ cho khoảng tứ phân vị của mẫu số liệu gốc.

Luyện tập 2 trang 78 Toán 12 Tập 1

Một người ghi lại thời gian đàm thoại của một số cuộc gọi cho kết quả như bảng sau:

Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.

Bài 3.1 trang 78 Toán 12 Tập 1

Bài 3.1 trang 78 Toán 12 Tập 1: Thống kê số thẻ vàng của mỗi câu lạc bộ trong giải ngoại hạng Anh mùa giải 2021 – 2022 cho kết quả sau:

a) Hãy ghép nhóm dãy số liệu trên thành các nhóm có độ dài bằng nhau với nhóm đầu tiên là [40; 50).

b) Tính khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu gốc và mẫu số liệu ghép nhóm thu được ở câu a. Giá trị nào là giá trị chính xác? Giá trị nào là giá trị xấp xỉ?

Giải bài tập SGK Toán 12 - Kết nối tri thức

Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Bài 1. Tính đơn điệu và cực trị của hàm số.

Bài 2. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số.

Bài 3. Đường tiệm cận của đồ thị hàm số.

Bài 4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số.

Bài 5. Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn.

Bài tập cuối chương 1

Chương 2. Vectơ và hệ trục tọa độ trong không gian

Bài 6. Vectơ trong không gian.

Bài 7. Hệ trục toạ độ trong không gian.

Bài 8. Biểu thức toạ độ của các phép toán vectơ.

Bài tập cuối chương 2.

Chương 3. Các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm

Bài 9. Khoảng biến thiên và khoảng tứ phân vị.

Bài 10. Phương sai và độ lệch chuẩn.

Bài tập cuối chương 3.

Hoạt động thực hành và trải nghiệm

Khảo sát và vẽ đồ thị hàm số với phần mềm GeoGebra.

Vẽ vectơ tổng của ba vectơ trong không gian bằng phần mềm GeoGebra.

Độ dài gang tay (gang tay của bạn dài bao nhiêu?)

Chương 4. Nguyên hàm và Tích phân.

Bài 11. Nguyên hàm.

Bài 12. Tích phân.

Bài 13. Ứng dụng hình học của tích phân.

Bài tập cuối chương 4.

Chương 5. Phương pháp tọa độ trong không gian

Bài 14. Phương trình mặt phẳng.

Bài 15. Phương trình đường thẳng trong không gian.

Bài 16. Công thức tính góc trong không gian.

Bài 17. Phương trình mặt cầu.

Bài tập cuối chương 5.

Chương 6. Xác suất có điều kiện

Bài 18. Xác suất có điều kiện.

Bài 19. Công thức xác suất toàn phần và công thức Bayes.

Bài tập cuối chương 6

Hoạt động thực hành và trải nghiệm

Tính nguyên hàm và tích phân với phần mềm GeoGebra.

Tính gần đúng tích phân bằng phương pháp hình thang.

Vẽ đồ hoạ 3D với phần mềm GeoGebra.

Công Thức Vật Lý