Giải bài tập Bài 3 trang 106 Toán 11 Tập 2 | Toán 11 - Cánh diều
Hướng dẫn giải chi tiết từng bước bài tập Bài 3 trang 106 Toán 11 Tập 2. Bài 5: Khoảng cách. Toán 11 - Cánh diều
Đề bài:
Với giả thiết ở Bài tập 2, hãy:
a) Chứng minh rằng MN // BC. Tính khoảng cách giữa hai đường thẳng MN và BC.
b) Chứng minh rằng MP // (BCD). Tính khoảng cách từ đường thẳng MP đến mặt phẳng (BCD).
c) Chứng minh rằng (MNP) // (BCD). Tính khoảng cách giữa hai mặt phẳng (MNP) và (BCD).
Đáp án và cách giải chi tiết:
a) Xét ∆ABC có: M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của ∆ABC.
Do đó MN // BC.
Do đó d(MN, BC) = d(M, BC).
Mà AB ⊥ BC (theo câu a Bài tập 2) nên MB ⊥ BC, do đó d(M, BC) = MB.
Khi đó, (do M là trung điểm của AB).
Vậy khoảng cách giữa hai đường thẳng MN và BC bằng
b) Xét ∆ABD có: M, P lần lượt là trung điểm của AB và AD nên MP là đường trung bình của ∆ABD.
Do đó MP // BD.
Mà BD ⊂ (BCD) nên MP // (BCD).
Suy ra d(MP, (BCD)) = d(M, (BCD)).
Ta có: AB ⊥ (BCD) (theo câu b Bài tập 2) mà M ∈ AB nên MB ⊥ (ABC).
Suy ra
Nên
Vậy khoảng cách từ đường thẳng MP đến mặt phẳng (BCD) bằng
c) Do MN // BC và BC ⊂ (BCD) nên MN // (BCD).
Ta có: MN // (BCD), MP // (BCD) và MN ∩ MP = M trong (MNP).
Suy ra (MNP) // (BCD).
Do đó
Vậy khoảng cách giữa hai mặt phẳng (MNP) và (BCD) bằng
Nguồn: loigiaitoan.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Bài tập liên quan:
Bài 1 trang 106 Toán 11 Tập 2
Hình 76 gợi nên hình ảnh hai mặt phẳng (P) và (Q) song song với nhau. Cột gỗ cao 4,2 m. Khoảng cách giữa (P) và (Q) là bao nhiêu mét?
Bài 2 trang 106 Toán 11 Tập 2
Cho hình tứ diện ABCD có AB = a, BC = b, BD = c, . Gọi M, N, P lần lượt là trung điểm của AB, AC, AD (Hình 77).
a) Tính khoảng cách từ điểm C đến đường thẳng AB.
b) Tính khoảng cách từ điểm D đến mặt phẳng (ABC).
c) Tính khoảng cách giữa hai đường thẳng AB và CD.
Bài 4 trang 106 Toán 11 Tập 2
Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình vuông cạnh a, SA = a (Hình 78).
a) Tính khoảng cách từ điểm S đến đường thẳng CD.
b) Tính khoảng cách từ điểm D đến mặt phẳng (SAB).
c) Tính khoảng cách từ điểm A đến mặt phẳng (SCD).
Bài 5 trang 106 Toán 11 Tập 2
Với giả thiết ở Bài tập 4, hãy:
a) Chứng minh rằng BC // (SAD) và tính khoảng cách giữa BC và mặt phẳng (SAD).
b) Chứng minh rằng BD ⊥ (SAC) và tính khoảng cách giữa hai đường thẳng BD và SC.