Giải bài tập Bài 2 trang 113 Toán 11 Tập 1 | Toán 11 - Cánh diều

Hướng dẫn giải chi tiết từng bước bài tập Bài 2 trang 113 Toán 11 Tập 1. Bài 5: Hình lăng trụ và hình hộp. Toán 11 - Cánh diều

Đề bài:

Cho hình hộp ABCD.A’B’C’D’. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh BC, AA’, C’D’, AD’. Chứng minh rằng:

a) NQ // A’D’ và NQ = 12A'D'

b) Tứ giác MNQC là hình bình hành;

c) MN // (ACD’);

d) (MNP) // (ACD’).

Đáp án và cách giải chi tiết:

a)


Trong mp(ADD’A’), xét DAA’D’ có N, Q lần lượt là trung điểm của AA’ và AD’

Do đó NQ là đường trung bình của tam giác

Suy ra NQ // A’D’ và NQ = 12A'D'

b)

Ta có: A’D’ // AD // BC, mà NQ // A’D’ (câu a) nên NQ // BC hay NQ // MC.

Ta cũng có A’D’ = AD = BC, mà NQ = 12A'D' (câu a) nên NQ = 12BC

Lại có BM = MC = 12BC (do M là trung điểm BC)

Do đó NQ = MC.

Tứ giác MNQC có NQ // MC và NQ = MC nên là MNQC hình bình hành.

c)

Do MNQC hình bình hành nên MN // QC

Mà QC ⊂ (ACD’) nên MN // (ACD’).

d)

Gọi O là trung điểm của ABCD.

Trong (ABCD), xét DABC có O, M lần lượt là trung điểm của AC, BC nên OM là đường trung bình của tam giác

Do đó OM // AB và OM = 12AB

Mà AB // D’P nên OM // D’P.

Lại có D’P = 12D'C' và D’C’ = AB nên OM = D’P.

Xét tứ giác D’PMO có OM // D’P và OM = D’P nên là hình bình hành

Suy ra PM // D’O

Mà D’O ⊂ (ACD’) nên PM // (ACD’).

Ta có: MN // (ACD’);

           PM // (ACD’);

           MN, PM cắt nhau tại điểm M và cùng nằm trong mp(MNP)

Do đó (MNP) // (ACD’).

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Bài 1 trang 113 Toán 11 Tập 1

Cho hình hộp ABCD.A’B’C D’.

a) Chứng minh rằng (ACB’) // (A’C’D).

b) Gọi G1, G2 lần lượt là giao điểm của BD’ với các mặt phẳng (ACB’) và (A’C’D). Chứng minh rằng G1, G2 lần lượt là trọng tâm của hai tam giác ACB’ và A’C’D.

c) Chứng minh rằng BG1 = G1G2 = D’G2.

Bài 3 trang 113 Toán 11 Tập 1

Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi E, F lần lượt là trung điểm của các cạnh AC và A’B’.

a) Chứng minh rằng EF // (BCC’B’).

b) Gọi I là giao điểm của đường thẳng CF với mặt phẳng (AC’B). Chứng minh rằng I là trung điểm đoạn thẳng CF.

Câu hỏi khởi động trang 110 Toán 11 Tập 1

Trong thực tiễn, ta thường gặp nhiều đồ dùng, vật thể gợi nên hình ảnh hình lăng trụ, hình hộp. Chẳng hạn: Khung lịch để bàn (Hình 68); Tháp đôi Puerta de Europa ở Madrid, Tây Ban Nha (Hình 69), …

Hình lăng trụ và hình hộp là hình như thế nào?

Hoạt động 1 trang 110 Toán 11 Tập 1

Cho hai mặt phẳng song song (P) và (P’). Trong mặt phẳng (P), cho đa giác A1A2….An. Qua các đỉnh A1, A2, ..., An vẽ các đường thẳng song song với nhau và cắt mặt phẳng (P’) lần lượt tại A1’, A2­’, ..., An’ (Hình 70 minh hoạ cho trường hợp n = 5).

a) Các tứ giác A1A2A2’A1’, A2A3A3’A2’, …, AnA1A1’An’ là những hình gì?

b) Các cạnh tương ứng của hai đa giác A1A2…An và A1’A2’…An’ có đặc điểm gì?

Hoạt động 2 trang 111 Toán 11 Tập 1

Từ định nghĩa hình lăng trụ, nhận xét đặc điểm các mặt bên, cạnh bên và hai mặt đáy của hình lăng trụ.

Luyện tập 1 trang 111 Toán 11 Tập 1

Cho một số ví dụ về những đồ dùng, vật thể trong thực tế có dạng hình lăng trụ.

Hoạt động 3 trang 111 Toán 11 Tập 1

Vẽ hình lăng trụ ABCD.A’B’C’D’ có đáy ABCD là hình bình hành.

Luyện tập 2 trang 112 Toán 11 Tập 1

Hãy liệt kê các đường chéo của hình hộp ABCD.A’B’C’D’ (Hình 73).

Hoạt động 4 trang 112 Toán 11 Tập 1

Nêu nhận xét gì về hai mặt phẳng chứa hai mặt đối diện của hình hộp.

Luyện tập 3 trang 113 Toán 11 Tập 1

Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng bốn mặt phẳng (ABC’D’), (BCD’A’), (CDA’B’), (DAB’C’) cùng đi qua một điểm.

Giải bài tập Toán 11 - Cánh diều

Chương 1: Hàm số lượng giác và phương trình lượng giác

Bài 1: Góc lượng giác. Giá trị lượng giác của góc lượng giác

Bài 2: Các phép biến đổi lượng giác

Bài 3: Hàm số lượng giác và đồ thị

Bài 4: Phương trình lượng giác cơ bản

Bài tập cuối chương 1

Chương 2: Dãy số. Cấp số cộng. Cấp số nhân

Bài 1: Dãy số

Bài 2: Cấp số cộng

Bài 3: Cấp số nhân

Bài tập cuối chương 2

Chương 3: Giới hạn. Hàm số liên tục

Bài 1: Giới hạn của dãy số

Bài 2: Giới hạn của hàm số

Bài 3: Hàm số liên tục

Bài tập cuối chương 3

Hoạt động thực hành và trải nghiệm - Tập 1

Chủ đề 1: Một số hình thức đầu tư tài chính

Chương 4: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song

Bài 1: Đường thẳng và mặt phẳng trong không gian

Bài 2: Hai đường thẳng song song trong không gian

Bài 3: Đường thẳng và mặt phẳng song song

Bài 4: Hai mặt phẳng song song

Bài 5: Hình lăng trụ và hình hộp

Bài 6: Phép chiếu song song. Hình biểu diễn của một hình không gian

Bài tập cuối chương 4

Chương 5: Một số yếu tố thống kê và xác suất

Bài 1: Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm

Bài 2: Biến cố hợp và biến cố giao. Biến cố độc lập. Các quy tắc tính xác suất

Bài tập cuối chương 5

Chương 6: Hàm số mũ và hàm số lôgarit

Bài 1: Phép tính lũy thừa với số mũ thực

Bài 2: Phép tính lôgarit

Bài 3: Hàm số mũ. Hàm số lôgarit

Bài 4: Phương trình, bất phương trình mũ và lôgarit

Bài tập cuối chương 6

Chương 7: Đạo hàm

Bài 1: Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm

Bài 2: Các quy tắc tính đạo hàm

Bài 3: Đạo hàm cấp hai

Bài tập cuối chương 7

Chương 8: Quan hệ vuông góc trong không gian. Phép chiếu vuông góc

Bài 1: Hai đường thẳng vuông góc

Bài 2: Đường thẳng vuông góc với mặt phẳng

Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện

Bài 4: Hai mặt phẳng vuông góc

Bài 5: Khoảng cách

Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối

Bài tập cuối chương 8

Hoạt động thực hành và trải nghiệm - Tập 2

Chủ đề 2: Tính thể tích một số hình khối trong thực tiễn