Giải bài tập Vận dụng trang 46 Toán 11 Tập 1 | Toán 11 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Vận dụng trang 46 Toán 11 Tập 1. Bài 5: Dãy số. Toán 11 - Kết nối tri thức

Đề bài:

Anh Thanh vừa được tuyển dụng vào một công ty công nghệ, được cam kết lương năm đầu sẽ là 200 triệu đồng và lương mỗi năm tiếp theo sẽ được tăng thêm 25 triệu đồng. Gọi sn (triệu đồng) là lương vào năm thứ n mà anh Thanh làm việc cho công ty đó. Khi đó ta có:

s1 = 200, sn = sn – 1 ­+ 25 với n ≥ 2.

a) Tính lương của anh Thanh vào năm thứ 5 làm việc cho công ty.

b) Chứng minh (sn) là dãy số tăng. Giải thích ý nghĩa thực tế của kết quả này.

Đáp án và cách giải chi tiết:

a) Ta có: s2 = s+ 25 = 200 + 25 = 225

s3 = s2 + 25 = 225 + 25 = 250

s4 = s3 + 25 = 250 + 25 = 275

s5 = s4 + 25 = 275 + 25 = 300

Vậy lương của anh Thanh vào năm thứ 5 làm việc cho công ty là 300 triệu đồng.

b) Ta có: sn = sn – 1 + 25 ⇔ s– sn – 1 = 25 > 0 với mọi n ≥ 2, n ∈ ℕ*.

Tức là sn > sn – 1 với mọi n ≥ 2, n ∈ ℕ*.

Vậy (sn) là dãy số tăng. Điều này có nghĩa là mức lương hàng năm của anh Thanh tăng dần theo thời gian làm việc.

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Bài 2.1 trang 46 Toán 11 Tập 1

Viết năm số hạng đầu và số hạng thứ 100 của các dãy số (un) có số hạng tổng quát cho bởi:

a) un = 3n – 2;

b) un = 3 . 2n;

c) un=1+1nn.

Bài 2.2 trang 46 Toán 11 Tập 1

Dãy số (un) được cho bởi hệ thức truy hồi: u1 = 1, un = n . un – 1 với n ≥ 2.

a) Viết năm số hạng đầu của dãy số.

b) Dự đoán công thức số hạng tổng quát của un.

Bài 2.3 trang 46 Toán 11 Tập 1

Xét tính tăng, giảm của dãy số (un), biết:

a) un = 2n – 1;

b) un = – 3n + 2;

c) un=-1n-12n.

Bài 2.4 trang 46 Toán 11 Tập 1

Trong các dãy số (un) sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?

a) un = n – 1;

b) un=n+1n+2;

c) un = sin n;

d) un = (– 1)n – 1 n2.

Bài 2.5 trang 46 Toán 11 Tập 1

Viết số hạng tổng quát của dãy số tăng gồm tất cả các số nguyên dương mà mỗi số hạng của nó:

a) Đều chia hết cho 3;

b) Khi chia cho 4 dư 1.

Bài 2.6 trang 46 Toán 11 Tập 1

Ông An gửi tiết kiệm 100 triệu đồng kì hạn 1 tháng với lãi suất 6% một năm theo hình thức tính lãi kép. Số tiền (triệu đồng) của ông An thu được sau n tháng được cho bởi công thức

An=1001+0,0612n.

a) Tìm số tiền ông An nhận được sau tháng thứ nhất, sau tháng thứ hai.

b) Tìm số tiền ông An nhận được sau 1 năm.

Bài 2.7 trang 47 Toán 11 Tập 1

Chị Hương vay trả góp một khoản tiền 100 triệu đồng và đồng ý trả dần 2 triệu đồng mỗi tháng với lãi suất 0,8% số tiền còn lại của mỗi tháng.

Gọi An (n ∈ ℕ) là số tiền còn nợ (triệu đồng) của chị Hương sau n tháng.

a) Tìm lần lượt A0, A1, A2, A3, A4, A5, A6 để tính số tiền còn nợ của chị Hương sau 6 tháng.

b) Dự đoán hệ thức truy hồi đối với dãy số (An).

Mở đầu trang 42 Toán 11 Tập 1

Năm 2020, số dân của một thành phố trực thuộc tỉnh là khoảng 500 nghìn người. Người ta ước tính rằng số dân của thành phố đó sẽ tăng trưởng với tốc độ khoảng 2% mỗi năm. Khi đó số dân Pn (nghìn người) của thành phố đó sau n năm, kể từ năm 2020, được tính bằng công thức Pn = 500(1 + 0,02)n. Hỏi nếu tăng trưởng theo quy luật như vậy thì vào năm 2030, số dân của thành phố đó là khoảng bao nhiêu nghìn người?

HĐ1 trang 42 Toán 11 Tập 1

Viết năm số chính phương đầu theo thứ tự tăng dần. Từ đó, dự đoán công thức tính số chính phương thứ n.

HĐ2 trang 43 Toán 11 Tập 1

a) Liệt kê tất cả các số chính phương nhỏ hơn 50 và sắp xếp chúng theo thứ tự từ bé đến lớn.

b) Viết công thức số hạng un của các số tìm được ở câu a) và nêu rõ điều kiện của n.

Luyện tập 1 trang 43 Toán 11 Tập 1

a) Xét dãy số gồm tất cả các số tự nhiên chia cho 5 dư 1 theo thứ tự tăng dần. Xác định số hạng tổng quát của dãy số.

b) Viết dãy số hữu hạn gồm năm số hạng đầu của dãy số trong câu a. Xác định số hạng đầu và số hạng cuối của dãy số hữu hạn này.

HĐ3 trang 43 Toán 11 Tập 1

Xét dãy số (un) gồm tất cả các số nguyên dương chia hết cho 5: 5, 10, 15, 20, 25, 30, ...

a) Viết công thức số hạng tổng quát un của dãy số.

b) Xác định số hạng đầu và viết công thức tính số hạng thứ n theo số hạng thứ n – 1 của dãy số. Công thức thu được gọi là hệ thức truy hồi.

Luyện tập 2 trang 44 Toán 11 Tập 1

a) Viết năm số hạng đầu của dãy số (un) với số hạng tổng quát un = n!.

b) Viết năm số hạng đầu của dãy số Fibonacci (Fn) cho bởi hệ thức truy hồi 

F1=1; F2=1Fn=Fn-1+Fn-2 n3

HĐ4 trang 45 Toán 11 Tập 1

a) Xét dãy số (un) với un = 3n – 1. Tính un + 1 và so sánh với u­n.

b) Xét dãy số (vn) với vn1n2. Tính vn + 1 và so sánh với vn.

Luyện tập 3 trang 45 Toán 11 Tập 1

Xét tính tăng, giảm của dãy số (un), với un = 1n+1.

HĐ5 trang 45 Toán 11 Tập 1

Cho dãy số (un) với un = n+1n, n*.

a) So sánh un và 1.

b) So sánh un và 2.

Luyện tập 4 trang 46 Toán 11 Tập 1

Xét tính bị chặn của dãy số (un), với un = 2n – 1.

Giải bài tập Toán 11 - Kết nối tri thức

Chương 1: Hàm số lượng giác và phương trình lượng giác

Bài 1: Giá trị lượng giác của góc lượng giác

Bài 2: Công thức lượng giác

Bài 3: Hàm số lượng giác

Bài 4: Phương trình lượng giác cơ bản

Bài tập cuối chương 1

Chương 2: Dãy số. Cấp số cộng và cấp số nhân

Bài 5: Dãy số

Bài 6: Cấp số cộng

Bài 7: Cấp số nhân

Bài tập cuối chương 2

Chương 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu ghép nhóm

Bài 8: Mẫu số liệu ghép nhóm

Bài 9: Các số đặc trưng đo xu thế trung tâm

Bài tập cuối chương 3

Chương 4: Quan hệ song song trong không gian

Bài 10: Đường thẳng và mặt phẳng trong không gian

Bài 11: Hai đường thẳng song song

Bài 12: Đường thẳng và mặt phẳng song song

Bài 13: Hai mặt phẳng song song

Bài 14: Phép chiếu song song

Bài tập cuối chương 4

Chương 5: Giới hạn. Hàm số liên tục

Bài 15: Giới hạn của dãy số

Bài 16: Giới hạn của hàm số

Bài 17: Hàm số liên tục

Bài tập cuối chương 5

Hoạt động thực hành trải nghiệm - Tập 1

Một vài áp dụng của toán học trong tài chính

Lực căng mặt ngoài của nước

Hoạt động thực hành trải nghiệm - Tập 2

Một vài mô hình toán học sử dụng hàm số mũ và hàm số lôgarit

Hoạt động thực hành trải nghiệm Hình học

Chương 6: Hàm số mũ và hàm số lôgarit

Bài 18: Lũy thừa với số mũ thực

Bài 19: Lôgarit

Bài 20: Hàm số mũ và hàm số lôgarit

Bài 21: Phương trình, bất phương trình mũ và lôgarit

Bài tập cuối chương 6

Chương 7: Quan hệ vuông góc trong không gian

Bài 22: Hai đường thẳng vuông góc

Bài 23: Đường thẳng vuông góc với mặt phẳng

Bài 24: Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng

Bài 25: Hai mặt phẳng vuông góc

Bài 26: Khoảng cách

Bài 27: Thể tích

Bài tập cuối chương 7

Chương 8: Các quy tắc tính xác suất

Bài 28: Biến cố hợp, biến cố giao, biến cố độc lập

Bài 29: Công thức cộng xác suất

Bài 30: Công thức nhân xác suất cho hai biến cố độc lập

Bài tập cuối chương 8

Chương 9: Đạo hàm

Bài 31: Định nghĩa và ý nghĩa của đạo hàm

Bài 32: Các quy tắc tính đạo hàm

Bài 33: Đạo hàm cấp hai

Bài tập cuối chương 9