Giải bài tập Hoạt động 2 trang 63 Toán 8 Tập 2 | Toán 8 - Cánh diều
Hướng dẫn giải chi tiết từng bước bài tập Hoạt động 2 trang 63 Toán 8 Tập 2. Bài 3. Đường trung bình của tam giác.. Toán 8 - Cánh diều
Đề bài:
Hoạt động 2 trang 63 Toán 8 Tập 2: Cho tam giác ABC có MN là đường trung bình (Hình 31).
a) MN có song song với BC hay không? Vì sao?
b) Tỉ số bằng bao nhiêu?
Đáp án và cách giải chi tiết:
a) Do MN là đường trung bình của tam giác ABC nên M là trung điểm của AB và N là trung điểm của AC.
Khi đó,
Xét ∆ABC có nên MN // BC (định lí Thalès đảo).
b) Do M là trung điểm của AB nên
Xét ∆ABC với MN // BC, ta có:
(hệ quả của định lí Thalès).
Nguồn: loigiaitoan.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Bài tập liên quan:
Khởi động trang 62 Toán 8 Tập 2
Khởi động trang 62 Toán 8 Tập 2: Hình 28 gợi nên hình ảnh tam giác ABC và đoạn thẳng MN với M, N lần lượt là trung điểm của hai cạnh AB, AC.
Hai đoạn thẳng MN và BC có mối liên hệ gì?
Hoạt động 1 trang 62 Toán 8 Tập 2
Hoạt động 1 trang 62 Toán 8 Tập 2: Quan sát tam giác ABC ở Hình 29 và cho biết hai đầu mút D, E của đoạn thẳng DE có đặc điểm gì.
Luyện tập 1 trang 62 Toán 8 Tập 2
Luyện tập 1 trang 62 Toán 8 Tập 2: Vẽ tam giác ABC và các đường trung bình của tam giác đó.
Luyện tập 2 trang 64 Toán 8 Tập 2
Luyện tập 2 trang 64 Toán 8 Tập 2: Cho hình thang ABCD (AB // CD). Giả sử M, N, P lần lượt là trung điểm của các đoạn thẳng AD, BC, AC. Chứng minh:
a) M, N, P thẳng hàng;
b)
Bài 1 trang 65 Toán 8 Tập 2:
Bài 1 trang 65 Toán 8 Tập 2: Cho tam giác ABC có M là trung điểm của AB, điểm N thuộc cạnh AC thoả mãn MN // BC. Chứng minh NA = NC và
Bài 2 trang 65 Toán 8 Tập 2
Bài 2 trang 65 Toán 8 Tập 2: Cho tam giác ABC có AM là đường trung tuyến, các điểm N, P phân biệt thuộc cạnh AB sao cho AP = PN = NB. Gọi Q là giao điểm của AM và CP. Chứng minh:
a) MN // CP;
b) AQ = QM;
c) CP = 4PQ.
Bài 3 trang 65 Toán 8 Tập 2
Bài 3 trang 65 Toán 8 Tập 2: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.
a) Chứng minh tứ giác MNPQ là hình bình hành.
b) Cho AC = BD. Chứng minh tứ giác MNPQ là hình thoi.
c) Cho AC ⊥ BD. Chứng minh tứ giác MNPQ là hình chữ nhật.
Bài 4 trang 65 Toán 8 Tập 2
Bài 4 trang 65 Toán 8 Tập 2: Cho tam giác ABC nhọn có H là trực tâm. Gọi M, N, P, Q lần lượt là trung điểm của các đoạn thẳng AB, BH, HC, CA. Chứng minh tứ giác MNPQ là hình chữ nhật.
Bài 5 trang 65 Toán 8 Tập 2:
Bài 5 trang 65 Toán 8 Tập 2: Trong Hình 36, ba cạnh màu vàng AB, BC, CA gợi nên hình ảnh tam giác ABC và đoạn thẳng màu xanh MN là một đường trung bình của tam giác đó. Bạn Duyên đứng ở phía dưới đo khoảng cách giữa hai chân cột số và số , từ đó ước lượng được độ dài đoạn thẳng MN khoảng 4,5 m. Khoảng cách giữa hai mép dưới của mái được tính bằng độ dài đoạn thẳng BC. Hỏi khoảng cách đó khoảng bao nhiêu mét?