Giải bài tập HĐ1 trang 28 Toán 11 Tập 2 | Toán 11 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập HĐ1 trang 28 Toán 11 Tập 2. Bài 22: Hai đường thẳng vuông góc. Toán 11 - Kết nối tri thức

Đề bài:

Trong không gian, cho hai đường thẳng chéo nhau m và n. Từ hai điểm phân biệt O, O' tuỳ ý lần lượt kẻ các cặp đường thẳng a, b và a', b' tương ứng song song với m, n (H.7.2).

a) Mỗi cặp đường thẳng a, a' và b, b' có cùng thuộc một mặt phẳng hay không?

b) Lấy các điểm  A, B (khác O) tương ứng thuộc a, b. Đường thẳng qua A song song với OO' cắt a' tại A', đường thẳng qua B song song với OO' cắt b' tại B'. Giải thích vì sao OAA'O'; OBB'O'; ABB'A' là các hình bình hành.

c) So sánh góc giữa hai đường thẳng a, b và góc giữa hai đường thẳng a', b'.

(Gợi ý: Áp dụng định lí côsin cho các tam giác OAB, O'A'B' ).

Đáp án và cách giải chi tiết:

a) Mỗi cặp đường thẳng a, a' và b, b' cùng thuộc một mặt phẳng vì a // a' và b // b'.

b) Có a // a' nên OA // O'A'.

Vì OA // O'A' và AA' // OO' nên OAA'O' là hình bình hành.

Có b // b' nên OB // O'B'.

Vì OB // O'B' và BB' // OO' nên OBB'O' là hình bình hành.

Vì OAA'O' là hình bình hành nên AA' = OO', OBB'O' là hình bình hành nên BB' = OO', suy ra AA' = BB'.

Vì AA' // OO' và BB' // OO' nên BB' // AA'.

Vì  AA' = BB' và BB' // AA' nên ABB'A' là hình bình hành.

c) Ta có góc giữa hai đường thẳng a, b là AOB^ và góc giữa hai đường thẳng a', b' là A'O'B'^.

Vì OAA'O' là hình bình hành nên OA = O'A'.

Vì OBB'O' là hình bình hành nên OB = O'B'.

Vì ABB'A' là hình bình hành nên AB = A'B'.

Do đó DOAB và DO'A'B' có các cạnh tương ứng bằng nhau.

Áp dụng định lí côsin cho DOAB có: cosAOB^=OA2+OB2-AB22.OA.OB.

Áp dụng định lí côsin cho DO'A'B' có: cosA'O'B'^=O'A'2+O'B'2-A'B'22.O'A'.O'B'.

Do DOAB và DO'A'B' có các cạnh tương ứng bằng nhau nên cosAOB^=cosA'O'B'^.

Vậy góc giữa hai đường thẳng a, b và góc giữa hai đường thẳng a', b' bằng nhau.

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Bài 7.1 trang 30 Toán 11 Tập 2

Cho hình lăng trụ ABC.A'B'C' có đáy là các tam giác đều. Tính góc (AB, B'C').

Bài 7.2 trang 30 Toán 11 Tập 2

Cho hình hộp ABCD.A'B'C'D' có các cạnh bằng nhau. Chứng minh rằng tứ diện ACB'D' có các cặp cạnh đối diện vuông góc với nhau.

Bài 7.3 trang 30 Toán 11 Tập 2

Cho tứ diện ABCD có CBD^=90°.

a) Gọi M, N tương ứng là trung điểm của AB, AD. Chứng minh rằng MN vuông góc với BC.

b) Gọi G, K tương ứng là trọng tâm của các tam giác ABC, ACD. Chứng minh rằng GK vuông góc với BC.

Bài 7.4 trang 30 Toán 11 Tập 2

Đối với nhà gỗ truyền thống, trong các cấu kiện: hoành, quá giang, xà cái, rui, cột tương ứng được đánh số 1, 2, 3, 4, 5 như trong Hình 7.8, những cặp cấu kiện nào vuông góc với nhau?

Mở đầu trang 11 Toán 11 Tập 2

Đối với các nút giao thông cùng mức hay khác mức, để có thể dễ dàng bố trí các nhánh rẽ và để người tham gia giao thông có góc nhìn đảm bảo an toàn, khi thiết kế người ta đều cố gắng để các tuyến đường tạo với nhau một góc đủ lớn và tốt nhất là góc vuông. Đối với nút giao thông cùng mức, tức là các đường giao nhau, thì góc giữa chúng là góc giữa hai đường thẳng mà ta đã biết. Còn đối với các nút giao khác mức, tức là các đường thẳng chéo nhau, thì góc giữa chúng được hiểu như thế nào? Bài học này sẽ đề cập tới đối tượng toán học tương ứng.

Câu hỏi trang 28 Toán 11 Tập 2

Nếu a song song hoặc trùng với a' và b song song hoặc trùng với b' thì (a, b) và (a', b') có mối quan hệ gì?

Vận dụng trang 29 Toán 11 Tập 2

Kim tự tháp Kheops là kim tự tháp lớn nhất trong các kim tự tháp ở Ai Cập, được xây dựng vào thế kỉ thứ 26 trước Công nguyên và là một trong bảy kì quan của thế giới cổ đại. Kim tự tháp có dạng hình chóp với đáy là hình vuông có cạnh dài khoảng 230 m, các cạnh bên bằng nhau và dài khoảng 219 m (kích thước hiện nay).

(Theo britannica.com).

Tính (gần đúng) góc tạo bởi cạnh bên SC và cạnh đáy AB của kim tự tháp.

HĐ2 trang 29 Toán 11 Tập 2

Đối với hai cánh cửa trong Hình 7.5, tính góc giữa hai đường mép cửa BC và MN.

Câu hỏi trang 29 Toán 11 Tập 2

Nếu đường thẳng a vuông góc với đường thẳng b thì a có vuông góc với các đường thẳng song song với b hay không?

Luyện tập trang 30 Toán 11 Tập 2

Cho tam giác MNP vuông tại N và một điểm A nằm ngoài mặt phẳng (MNP). Lần lượt lấy các điểm B, C, D sao cho M, N, P tương ứng là trung điểm của AB, AC, CD (H.7.7). Chứng minh rằng AD và BC vuông góc với nhau và chéo nhau.

Giải bài tập Toán 11 - Kết nối tri thức

Chương 1: Hàm số lượng giác và phương trình lượng giác

Bài 1: Giá trị lượng giác của góc lượng giác

Bài 2: Công thức lượng giác

Bài 3: Hàm số lượng giác

Bài 4: Phương trình lượng giác cơ bản

Bài tập cuối chương 1

Chương 2: Dãy số. Cấp số cộng và cấp số nhân

Bài 5: Dãy số

Bài 6: Cấp số cộng

Bài 7: Cấp số nhân

Bài tập cuối chương 2

Chương 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu ghép nhóm

Bài 8: Mẫu số liệu ghép nhóm

Bài 9: Các số đặc trưng đo xu thế trung tâm

Bài tập cuối chương 3

Chương 4: Quan hệ song song trong không gian

Bài 10: Đường thẳng và mặt phẳng trong không gian

Bài 11: Hai đường thẳng song song

Bài 12: Đường thẳng và mặt phẳng song song

Bài 13: Hai mặt phẳng song song

Bài 14: Phép chiếu song song

Bài tập cuối chương 4

Chương 5: Giới hạn. Hàm số liên tục

Bài 15: Giới hạn của dãy số

Bài 16: Giới hạn của hàm số

Bài 17: Hàm số liên tục

Bài tập cuối chương 5

Hoạt động thực hành trải nghiệm - Tập 1

Một vài áp dụng của toán học trong tài chính

Lực căng mặt ngoài của nước

Hoạt động thực hành trải nghiệm - Tập 2

Một vài mô hình toán học sử dụng hàm số mũ và hàm số lôgarit

Hoạt động thực hành trải nghiệm Hình học

Chương 6: Hàm số mũ và hàm số lôgarit

Bài 18: Lũy thừa với số mũ thực

Bài 19: Lôgarit

Bài 20: Hàm số mũ và hàm số lôgarit

Bài 21: Phương trình, bất phương trình mũ và lôgarit

Bài tập cuối chương 6

Chương 7: Quan hệ vuông góc trong không gian

Bài 22: Hai đường thẳng vuông góc

Bài 23: Đường thẳng vuông góc với mặt phẳng

Bài 24: Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng

Bài 25: Hai mặt phẳng vuông góc

Bài 26: Khoảng cách

Bài 27: Thể tích

Bài tập cuối chương 7

Chương 8: Các quy tắc tính xác suất

Bài 28: Biến cố hợp, biến cố giao, biến cố độc lập

Bài 29: Công thức cộng xác suất

Bài 30: Công thức nhân xác suất cho hai biến cố độc lập

Bài tập cuối chương 8

Chương 9: Đạo hàm

Bài 31: Định nghĩa và ý nghĩa của đạo hàm

Bài 32: Các quy tắc tính đạo hàm

Bài 33: Đạo hàm cấp hai

Bài tập cuối chương 9