Giải bài tập Bài 7.38 trang 65 Toán 11 Tập 2 | Toán 11 - Kết nối tri thức

Hướng dẫn giải chi tiết từng bước bài tập Bài 7.38 trang 65 Toán 11 Tập 2. Bài tập cuối chương 7. Toán 11 - Kết nối tri thức

Đề bài:

Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA = a, OB = a2 và OC = 2a. Tính khoảng cách từ điểm O đến mặt phẳng ABC.

Đáp án và cách giải chi tiết:

 

Kẻ OD  BC tại D.

Có OA  OB, OA  OC nên OA  (OBC), suy ra OA  BC mà OD  BC nên

BC  (OAD).

Kẻ OE  AD tại E.

Vì BC  (OAD) nên BC  OE mà OE  AD nên OE  (ABC).

Do đó d(O, (ABC)) = OE.

Xét tam giác OBC vuông tại O, OD là đường cao có:
1OD2=1OB2+1OC2=12a2+14a2=34a2.

Vì OA  (OBC) nên OA  OD.

Xét tam giác AOD vuông tại O, OE là đường cao nên
1OE2=1OA2+1OD2=1a2+34a2=74a2 OE=2a77.

Vậy d(O, (ABC))

Nguồn: loigiaitoan.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Bài tập liên quan:

Bài 7.33 trang 64 Toán 11 Tập 2

Cho các phát biểu sau:

(1) (P) và (Q) có giao tuyến là đường thẳng a và cùng vuông góc với mặt phẳng (R) thì a  (R).

(2) Hai mặt phẳng (P) và (Q) vuông góc với nhau và có giao tuyến là đường thẳng a, một đường thẳng b nằm trong mặt phẳng (P) và vuông góc với đường thẳng a thì b  (Q).

(3) Mặt phẳng (P) chứa đường thẳng a và a vuông góc với (Q) thì (P)  (Q).

(4) Đường thẳng a nằm trong mặt phẳng (P) và mặt phẳng (P) vuông góc với mặt phẳng (Q) thì a  (Q).

Số phát biểu đúng trong các phát biểu trên là:

A. 1.

B. 2.

C. 3.

D. 4.

Bài 7.34 trang 64 Toán 11 Tập 2

Cho mặt phẳng (P) vuông góc với mặt phẳng (Q) và a là giao tuyến của (P) và (Q). Trong các phát biểu dưới đây, phát biểu nào đúng?

A. Đường thẳng d nằm trên (Q) thì d vuông góc với (P).

B. Đường thẳng d nằm trên (Q) và d vuông góc với a thì d vuông góc với (P).

C. Đường thẳng d vuông góc với a thì d vuông góc với (P).

D. Đường thẳng d vuông góc với (Q) thì d vuông góc với (P).

Bài 7.35 trang 64 Toán 11 Tập 2

Cho hình chóp tứ giác đều S.ABCD. Phát biểu nào sau đây là đúng?

A. Số đo của góc nhị diện [S, AB, C] bằng SBC^𝑆𝐵𝐶^.

B. Số đo của góc nhị diện [D, SA, B] bằng 90°.

C. Số đo của góc nhị diện [S, AC, B] bằng 90°.

D. Số đo của góc nhị diện [D, SA, B] bằng BSD^𝐵𝑆𝐷^.

Bài 7.36 trang 64 Toán 11 Tập 2

Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA  (ABCD). Phát biểu nào sau đây là sai?

A. Đường thẳng BC vuông góc với mặt phẳng (SAB).

B. Đường thẳng BD vuông góc với mặt phẳng (SAC).

C. Đường thẳng AC vuông góc với mặt phẳng (SBD).

D. Đường thẳng AD vuông góc với mặt phẳng (SAB).

Bài 7.37 trang 64 Toán 11 Tập 2

Thể tích của khối chóp có diện tích đáy bằng S, chiều cao bằng h là:

A. V = S.h.

B. V = 1212.S.h.

C. V = 1313.S.h.

D. V = 2323.S.h.

Bài 7.39 trang 65 Toán 11 Tập 2

Cho tứ diện ABCD có tam giác ABC cân tại A, tam giác BCD cân tại D. Gọi I là trung điểm của cạnh BC.

a) Chứng minh rằng BC  (AID).

b) Kẻ đường cao AH của tam giác AID. Chứng minh rằng AH  (BCD).

c) Kẻ đường cao IJ của tam giác AID. Chứng minh rằng IJ là đường vuông góc chung của AD và BC.

Bài 7.40 trang 65 Toán 11 Tập 2

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, BC = a và CAB^𝐶𝐴𝐵^ = 30o. Biết SA  (ABC) và SA = a2.

a) Chứng minh rằng (SBC)  (SAB).

b) Tính theo a khoảng cách từ điểm A đến đường thẳng SC và khoảng cách từ điểm A đến mặt phẳng (SBC).

Bài 7.41 trang 65 Toán 11 Tập 2

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Biết tam giác SAD vuông cân tại S và (SAD)  (ABCD).

a) Tính theo a thể tích của khối chóp S.ABCD.

b) Tính khoảng cách giữa hai đường thẳng AD và SC.

Bài 7.42 trang 65 Toán 11 Tập 2

Cho hình hộp ABCD.A'B'C'D' có độ dài tất cả các cạnh bằng a, AA'  (ABCD) và BAD^ = 60o.

a) Tính thể tích của khối hộp ABCD.A'B'C'D'.

b) Tính khoảng cách từ A đến mặt phẳng (A'BD).

Bài 7.43 trang 65 Toán 11 Tập 2

Cho hình lăng trụ ABCD.A'B'C'D'. Biết A'.ABCD là hình chóp đều có tất cả các cạnh đều bằng nhau và bằng a. Tính theo a thể tích của khối lăng trụ ABCD.A'B'C'D' và thể tích của khối chóp A'.BB'C'C.

Bài 7.44 trang 65 Toán 11 Tập 2

Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, AB // CD và AB = BC = DA = a, CD = 2a. Biết hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy (ABCD) và SA = a22 . Tính theo a khoảng cách từ S đến mặt phẳng (ABCD) và thể tích của khối chóp S.ABCD.

Bài 7.45 trang 65 Toán 11 Tập 2

Trên mặt đất phẳng, người ta dựng một cây cột AB có chiều dài bằng 10 m và tạo với mặt đất góc 80°. Tại một thời điểm dưới ánh sáng mặt trời, bóng BC của cây cột trên mặt đất dài 12 m vào tạo với cây cột một góc bằng 120° (tức là ABC^ = 120o). Tính góc giữa mặt đất và đường thẳng chứa tia sáng mặt trời tại thời điểm nói trên.

Giải bài tập Toán 11 - Kết nối tri thức

Chương 1: Hàm số lượng giác và phương trình lượng giác

Bài 1: Giá trị lượng giác của góc lượng giác

Bài 2: Công thức lượng giác

Bài 3: Hàm số lượng giác

Bài 4: Phương trình lượng giác cơ bản

Bài tập cuối chương 1

Chương 2: Dãy số. Cấp số cộng và cấp số nhân

Bài 5: Dãy số

Bài 6: Cấp số cộng

Bài 7: Cấp số nhân

Bài tập cuối chương 2

Chương 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu ghép nhóm

Bài 8: Mẫu số liệu ghép nhóm

Bài 9: Các số đặc trưng đo xu thế trung tâm

Bài tập cuối chương 3

Chương 4: Quan hệ song song trong không gian

Bài 10: Đường thẳng và mặt phẳng trong không gian

Bài 11: Hai đường thẳng song song

Bài 12: Đường thẳng và mặt phẳng song song

Bài 13: Hai mặt phẳng song song

Bài 14: Phép chiếu song song

Bài tập cuối chương 4

Chương 5: Giới hạn. Hàm số liên tục

Bài 15: Giới hạn của dãy số

Bài 16: Giới hạn của hàm số

Bài 17: Hàm số liên tục

Bài tập cuối chương 5

Hoạt động thực hành trải nghiệm - Tập 1

Một vài áp dụng của toán học trong tài chính

Lực căng mặt ngoài của nước

Hoạt động thực hành trải nghiệm - Tập 2

Một vài mô hình toán học sử dụng hàm số mũ và hàm số lôgarit

Hoạt động thực hành trải nghiệm Hình học

Chương 6: Hàm số mũ và hàm số lôgarit

Bài 18: Lũy thừa với số mũ thực

Bài 19: Lôgarit

Bài 20: Hàm số mũ và hàm số lôgarit

Bài 21: Phương trình, bất phương trình mũ và lôgarit

Bài tập cuối chương 6

Chương 7: Quan hệ vuông góc trong không gian

Bài 22: Hai đường thẳng vuông góc

Bài 23: Đường thẳng vuông góc với mặt phẳng

Bài 24: Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng

Bài 25: Hai mặt phẳng vuông góc

Bài 26: Khoảng cách

Bài 27: Thể tích

Bài tập cuối chương 7

Chương 8: Các quy tắc tính xác suất

Bài 28: Biến cố hợp, biến cố giao, biến cố độc lập

Bài 29: Công thức cộng xác suất

Bài 30: Công thức nhân xác suất cho hai biến cố độc lập

Bài tập cuối chương 8

Chương 9: Đạo hàm

Bài 31: Định nghĩa và ý nghĩa của đạo hàm

Bài 32: Các quy tắc tính đạo hàm

Bài 33: Đạo hàm cấp hai

Bài tập cuối chương 9